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Abstrat

A losed orientable surfae of genus g an be

obtained by appropriate identi�ation of pairs

of edges of a 4g-gon (the polygonal shema).

The identi�ed edges form 2g loops on the sur-

fae, that are disjoint exept for their om-

mon end-point. These loops are generators of

both the fundamental group and the homol-

ogy group of the surfae. The inverse prob-

lem is onerned with �nding a set of 2g loops

on a triangulated surfae, suh that utting

the surfae along these loops yields a (anon-

ial) polygonal shema. We present two opti-

mal algorithms for this inverse problem. Both

algorithms have been implemented using the

CGAL polyhedron data struture.

1 Introdution

Let M

g

be a regular 4g{gon, whose suessive

edges are labeled a

1

; b

1

; a

1

; b

1

; � � � ; a

g

; b

g

; a

g

; b

g

.

Edge x is direted ounterlokwise, edge x

lokwise. The spae obtained by identifying

edges x and x, as indiated by their diretion,

is a losed oriented surfae; See e.g. [6, Chapter

1.4℄. This surfae, alled orientable surfae of

genus g, is homeomorphi to a 2{sphere with
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g handles. E.g., M

1

is the torus; See Figure 1.

The labeled polygonM

g

is alled the anonial

polygonal shema of M

g

.

a

1

a

1

b

1

b

1

Figure 1: From polygonal shema to orientable

surfae: the torus.

It is easy to see that all verties are identi-

�ed to a single point p

0

of the surfae. After

identi�ation in pairs, the edges of the polyg-

onal shema form 2g urves on M

g

, whih are

disjoint, exept for their ommon endpoint p

0

.

These 2g loops are generators of the fundamen-

tal group of M

g

(and of the �rst homology

group). In the sequel we drop the dependene

on the genus from our notation, i.e.,M denotes

a losed orientable surfae of genus g.

In this paper we onsider the inverse prob-

lem: Given a ombinatorial (triangulated) sur-
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fae, �nd a anonial set of PL-urves (genera-

tors) suh that, after utting the surfae along

these generators, we obtain a anonial polygo-

nal shema for the surfae. A PL-urve is an al-

ternating sequene of edges and verties, where

edges onnet two suessive verties that lie in

the same fae, either in its interior or on the

interior of one of its boundary edges.

In [8℄ an algorithm is skethed that on-

struts a anonial set of generators in optimal

time and spae. In this paper, we present in

detail a simple optimal algorithm; we all this

the inremental method, sine we onstrut the

generators while traversing all triangles of the

surfae. Our main result is

Theorem 1 A anonial set of PL-generators

for an orientable losed surfae of genus g, with

a total of n verties, edges and faes, an be

omputed in O(gn) time and spae, whih is

worst-ase optimal. Eah PL-generator on-

sists of O(n) edges and verties.

. . .
...

...
.
.
.

Figure 2: A surfae with two groups of dg=2e

and bg=2 handles, separated by a thin tunnel

of size 
(n). Regardless of the position of the

base-point p

0

, at least half of this tunnel must

be rossed by at least bg=2 generators.

Optimality is easy to establish; See Figure 2.

Furthermore, we show how to turn Bra-

hana's method [1℄ into a seond algorithm om-

puting a anonial set of generators in optimal

time and spae. We have implemented both

methods using the C++ library CGAL, and have

ompared the quality of the output of both al-

gorithms. Although both algorithms are opti-

mal, our implementation of Brahana's method

seems to produe better (less omplex) genera-

tors than the inremental method; f Figure 7.

There are several reasons for presenting

these algorithms here: (i) our algorithms

greatly simplify the method of [8℄, (ii) full de-

tails are presented for the �rst time, (iii) the al-

gorithms have been implemented, and (iv) the

algorithms an be used to solve several other

problems in omputational topology. Among

the appliations are the onstrution of PL-

homeomorphisms between surfaes, the on-

strution of (a part of) the universal overing

spae of the surfae, solving the ontratibility

problem of PL-urves on surfaes, f [5℄, de-

iding whether two PL-urves on a surfae are

homotopi, and, if so, onstruting a homo-

topy, f [4℄. Other appliations are oneivable

in onnetion with morphing, where a suitable

parametrization of 2-manifolds is provided by

the disk obtained by utting along the anoni-

al generators.

For general bakground material on ompu-

tational topology, also in onnetion with ap-

pliations, we refer to the surveys [3℄ and [7℄.

2 Surfaes with ollars

Triangulated surfaes will be represented by

Doubly-Conneted Edge List, a data struture

for representing subdivisions of surfaes. We

refer to [2, Chapter 2℄ for details on this data

struture. Note that every undireted edge of

the triangulation orresponds to exatly two

half-edges. The inremental algorithm starts

with the open surfae S = M n ft

0

g, where

t

0

is an arbitrary (losed) triangle, eventually

ontaining the ommon base point of the on-

struted generators. Initially, the topologial

boundary B of S is the boundary of t

0

. The

algorithm proeeds by visiting triangles ini-

dent to B along at least one edge, and utting

these (losed) triangles from S. Note that the

non-visited part of M is an open subset of M.

The topologial boundary B is adjusted aord-

ingly. It is represented as a irular sequene

of half-edges, oriented in suh a way that the

triangle to the left of a half-edge belongs to S.

We say that a vertex ours in B if it is the

origin of a half-edge in B.

As we will explain in more detail, the bound-

ary B may beome non-regular during this pro-

ess, in the sense that a vertex ours multiply
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in B, or it ontains both a half-edge and its

opposite partner (alled its Twin in [2℄). See

Figure 3 (Bottom). Yet, the irregularity of B,

and hene of the surfae S, is restrited. This

is made more preise by introduing the notion

of a ollar of an open surfae.

De�nition 2 A surfae with ollar in M is a

pair (S; ), where S is an open submanifold of

M, and  : S

1

� [0; 1℄ ! M is a ontinuous

map, suh that

1. (S

1

� (0; 1℄) � S, and the restrition

 j

S

1

�(0;1℄

: S

1

� (0; 1℄! S is an embedding;

2. (S

1

� f0g) �Mn S;

3. The topologial boundary of S (viz S n S) is

the image of the losed urve  : S

1

�f0g !M.

Observe that the urve  : S

1

� f0g ! M is

in general not an embedding. The urve  :

S

1

�f1g !M, whih is an embedding, may be

onsidered as a `regularization' of the { perhaps

non-regular { boundary of S. We refer to the

half-open strip (S

1

� (0; 1℄) as the ollar of S.

This ollar has attahment urve (S

1

� f0g),

and free boundary (S

1

�f1g). Note that every

ontinuous urve onneting a point in S with

a point in Mn S intersets the ollar of S.

B

p

1

p

2

p

3

p

4

Figure 3: Collars. Top: a PL-ollar is obtained

by inserting verties near the tail of half-edges

inident to B, or in a orner of a triangle. Bot-

tom: a ollar on a singular urve B.

A ollar S has a straightforward representa-

tion in the PL-setting. To this end, we insert a

vertex near the tail of eah half-edge in S em-

anating from a vertex of B. Note that in this

way an edge with both endpoints on B obtains

two verties. Furthermore, if two suessive

half-edges of B, sharing a ommon vertex v,

are inident to the same triangle t of S, there

is no half-edge of S emanating from v. In this

ase, we insert a vertex in the interior of t (e.g.,

on the bisetor of the angle of t at v). Connet-

ing the sequene of inserted verties by edges

we obtain a PL-ollar of S; See Figure 3. This

type of ollar will be used in Setion 4.

As usual, the Euler harateristi �(S) of S

is the alternating sum of the numbers of ver-

ties, edges and faes of S. Cutting the surfae

along B we obtain a boundary of S onsisting

of a yli sequene of half-edges (where some

pairs of half-edges may orrespond to the same

undireted edge of M). Gluing a disk along

this yli sequene of half-edges yields a losed

orientable surfae. By de�nition, the genus g

of S is the genus of the latter surfae. It is

straightforward to hek that �(S) = 1� 2g.

3 Surfae traversal

We now desribe the algorithm that visits all

triangles of M, starting from a single triangle.

This algorithm is the bakbone for the on-

strution of a anonial system of generators,

to be desribed in Setion 4. Globally speaking

the algorithm proeeds as follows. The main

proedure MP, whih is alled on the omple-

ment S of the initial triangle, visits a triangle t

inident upon the topologial boundary B of S,

updates S and B, and alls itself reursively on

the updated version of S. During this reursive

proess, S may beome disonneted, in whih

ase MP is alled reursively on eah onneted

omponent. It may also happen that S is not

disonneted, but is not a surfae with ollar

either (it will turn out that in the latter ase

the ollar is split). Furthermore, in view of our

ultimate goal of onstruting generators, it is

ineÆient to visit onneted omponents that

are homeomorphi to a disk. Therefore we also
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require S has positive genus g.

To �ll in the details, we �rst speify the input

of the main proedure.

Preondition of MP. The main proedure

MP takes as input a pair (S; g), where S is a

surfae with ollar, whih has positive genus g.

In partiular, the ondition g > 0 guarantees

that MP will not be alled on disks, whih is

ruial in the analysis of the time omplexity.

The proess of visiting triangle t, inident upon

the topologial boundary B, is alled an exten-

sion. We distinguish two types of extensions.

=)

=)

h

1

h

1

h

2

h

2

h

3

h

3

Figure 4: A regular extension.

Regular Extension: Triangle t shares either

two verties and one half-edge h

1

(Figure 4,

top), or three verties and two half-edges h

1

,

h

2

(Figure 4, bottom), with B.

We update B in the former ase by repla-

ing the half-edge h

1

with the two-hain h

2

; h

3

,

in the latter ase by replaing the two-hain

h

1

; h

2

with the half-edge h

3

. Note that the

topologial types of B and the ollar do not

hange upon a regular extension. In partiular,

S

0

= S nftg is a surfae with ollar. Therefore,

the main proedure MP is alled reursively on

S

0

. It is obvious that the Euler harateristi,

and hene the genus, does not hange under

regular extension.

Splitting Extension: Triangle t shares three

verties and one half-edge with B (Figure 5,

upper part).

The vertex of t, not adjaent to the ommon

half-edge of B and t, is alled the split vertex,

and is denoted by v

s

. Let the verties of t be

v

1

, v

2

and v

3

, suh that v

1

v

2

is a half-edge of B,

and hene v

3

= v

s

. Let L be the part of B be-

tween v

3

and v

1

, and let R be the part between

v

2

and v

3

. Then B is split into B

l

= v

1

v

3

L and

B

r

= v

3

v

2

R. We distinguish two sub-ases:

S n ftg is not onneted. In this ase S n ftg

onsists of two onneted omponents, S

l

and

S

r

say, with topologial boundary B

l

and B

r

,

respetively. Both S

l

and S

r

are surfaes with

ollars, with attahment urves B

l

and B

r

, re-

spetively.

S n ftg is onneted. In this ase the topolog-

ial boundary of S n ftg is B

l

[ B

r

, so S n ftg

is not a surfae with ollar. In partiular, MP

does not aept S n ftg as input. To remedy

this situation, let  be a shortest edge-path in

S n ftg onneting B

l

and B

r

, alled the join-

path (of B

l

and B

r

). Let v

l

2 B

l

and v

r

2 B

r

be the extremal verties of . See Figure 5

Lemma 3 1. If S n ftg is onneted, and  is

a join-path, then S n (ftg [ ) is a surfae with

ollar, having genus g � 1.

2. If S n ftg is not onneted, its onneted

omponents S

l

and S

r

are surfaes with ol-

lar. Moreover, if their genuses are g

l

and g

r

,

respetively, then g = g

l

+ g

r

.

Proof. We only prove the �rst part, the

proof of the seond part being similar. First

observe that S

0

= S n (ftg[) has one triangle

(viz t) less than S. Furthermore, edge v

1

v

2

does not our in S

0

, but the edges of  our

one in S and twie in S

0

. Similarly, if the split

vertex v

s

is not a vertex of , it ours twie in

S, as do the verties of . Therefore, the Euler

harateristis � of S and �

0

of S

0

are related

by �

0

= �+1+#V ()�#E() = �+2. Here

V () and E() denote the numbers of verties

and edges of . The same identity holds if v

s

ours (one or twie) in . The last identity

yields g

0

= g�1. Moreover, S

0

is a surfae with

ollar, where the ollar has attahment urve

B

0

: v

1

! v

s

�

! v

l

�

! v

r

�

! v

2

! v

s

�

! v

r

�

!

v

l

�

! v

1

. Here v ! v

0

denotes a half-edge from

v to v

0

, and v

�

! v

0

denotes a path from v to v

0

onsisting of zero or more half-edges. �

In the notation of Lemma 3, if S n ftg is

not onneted, the main proedure MP is re-

ursively alled on the onneted omponents
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v

l

v

l

v

l

v

r

v

r

v

r

v

1

v

1

v

1

v

2

v

2

v

2

v

3

v

3

= v

s

v

3

= v

s

Figure 5: A splitting extension.

S

l

, if g

l

> 0, and S

r

, if g

r

> 0. Furthermore,

if S n ftg is onneted, the main proedure is

reursively alled on S

0

if g

0

> 0.

Lemma 4 1. If S n ftg is onneted, the join-

path  an be determined in time proportional

to the size of S.

2. If S n ftg has two onneted omponents,

establishing non-onnetedness and omputing

the genuses of the onneted omponents an

be performed in time proportional to the size

of the smaller onneted omponent.

Proof. When a split ours, we try to on-

strut the join-path  by means of a tandem

searh traversing the edges of the surfae in

parallel from the soures B

l

and B

r

. More pre-

isely, assuming the edges in B are already ol-

ored, we start oloring the half-edges of B

l

and

B

r

with di�erent olors, until the searh ex-

hausts the smaller of B

l

and B

r

. After that, we

reset the olor of the larger part of the bound-

ary. Then we visit the open surfae S n ftg by

two parallel traversals, one starting from the

urve B

l

and the other one from B

r

. We visit

and olor new edges and their verties with

the same olor as the extended boundary from

whih the traversal started. Then either the

tandem searh sueeds in onneting B

l

and

B

r

by the join-path , or it detets that S nftg

has two onneted omponents S

l

and S

r

by ex-

hausting the smaller of these two omponents.

In the latter ase we ompute the genus of the

smaller omponent by determining the number

of verties, edges and faes. Lemma 4, part 2,

gives the genus of the other onneted ompo-

nent. �

Lemma's 3 and 4 allow us to analyze the time

omplexity of the traversal of the initial surfae

M. To this end, let t

0

be an arbitrary triangle

of M.

Corollary 5 The all of the main proedure

on the surfae with ollar S

0

= M n ft

0

g is

exeuted in time O(gn), where g is the genus

of M and n is the total number of verties,

edges and triangles in M.

Proof. The proof goes by indution with

respet to the lexiographi order on the set of

pairs (g; n). Our indutive hypothesis is:

IH(g,n): A all of MP on a surfae with ollar

of genus g and omplexity n, takes O(gn) time.

Suppose the laim has been proven for ol-

lared surfaes of genus g

0

and omplexity n

0

suh that (g

0

; n

0

) lexiographially preedes

(g; n). Consider a surfae S of genus g and

omplexity n. Let t be the �rst triangle visited

in the all of MP on S, and let S

0

= S n ftg.

Deteting whether an extension is regular or

splitting an be easily implemented by olor-

ing the verties of the attahment urve B. If

visiting t orresponds to a regular extension,
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the all subsequent all of MP on S

0

takes

O(g(n � 1)) time. Sine a regular extension

is performed in onstant time, IH(g,n) holds

in this ase.

So suppose visiting t orresponds to a split-

ting extension. If S

0

is onneted, we onstrut

a join-path ; aording to Lemma 4, this takes

O(n) time. If the genus g � 1 of S n (ftg [ )

is zero, the reursion terminates, so the hy-

pothesis holds in this ase. If g > 1, the main

proedure reurs on S

0

, whih, aording to the

indutive hypothesis, takes O((g � 1)n) time.

The all on S takes O(n) additional time dedi-

ated to the onstrution of , so the indutive

hypothesis holds in this ase.

If S

0

is not onneted, it has two onneted

omponents S

l

and S

r

, with genus g

l

and g

r

,

and omplexitiy n

l

and n

r

, respetively. Note

that n

l

+n

r

= n�1, and reall that g

l

+g

r

= g.

Splitting the boundary (viz loating the split

vertex v

s

) and reoloring its smaller onneted

omponent again goes in O(min(n

l

; n

r

)) time,

using a tandem searh like we did in the proof

of Lemma 4.

If g

l

> 0 and g

r

> 0, the main proedure is

reursively alled on both S

l

and S

r

, where it

spends O(g

l

n

l

) and O(g

r

n

r

) time, respetively.

Sine deteting disonnetedness, and omput-

ing g

l

and g

r

, takes O(min(n

l

; n

r

)) time, we see

that the overall time omplexity is O(gn).

If g

l

= 0, the reursive all on S

r

takes

O(gn

r

) time (the topologial disk S

l

is dis-

arded). Therefore, the overall time omplex-

ity in this ase is O(gn

r

+min(n

l

; n

r

)), hene

again O(gn). If g

r

= 0, we argue similarly. �

4 Construting generators

The bakbone algorithm from Setion 2 will

now be extended by onstruting a anonial

set of generators from a base-point in the ini-

tial triangle. These generators will be routed

along an approah path 

AP

, whih onnets

the base point with the boundary of the non-

visited part of the surfae. As the algorithm

proeeds, we should take are that generators

we are about to omplete do not interset al-

ready onstruted generators. Yet, we allow

already onstruted generators to interset the

non-visited part of the surfae, although possi-

ble intersetions should be on�ned to the ol-

lar of the non-visited part.

More preisely, let t

0

be the �rst triangle

visited, and let the base-point p

0

be an inte-

rior point of t

0

. We �rst extend the preon-

dition, introdued in Setion 2 for alling the

main proedure MP on a non-visited surfae

S with ollar. To this end, we assume from

now on that a ollar is pieewise linear, as de-

sribed in Setion 2 (See also Figure 3). In

partiular, a ollar of S only intersets edges

and faes of S inident upon the attahment

urve B, and suh edges are interseted in inte-

rior points. Furthermore, we require that the

attahment urve B of S has a distinguished

half-edge h

APA

, satisfying the following ondi-

tions:

(AP1) The base-point p

0

is onneted by a

PL-urve 

AP

to h

APA

; apart from p

0

, this ap-

proah path is disjoint from S, and it does not

share any point with already onstruted gen-

erators and approah paths;

(AP2) The terminal point of 

AP

on h

APA

an

be onneted to the free boundary of the ol-

lar of S by a line segment inside the fae of S

inident upon h

APA

, whih does not interset

any of the generators onstruted so far;

(AP3) No already onstruted generator in-

tersets the free boundary of the ollar of S.

No already onstruted approah path inter-

sets S.

The distinguished edge h

APA

is alled the ap-

proah path aperture of S. The existene of

the line segment, refered to in ondition AP2,

will allow us to extend the approah path when

visiting new triangles.

Lemma 6 The main proedure MP an be en-

haned in suh a way that:

1. It maintains the invariants (AP1), (AP2)

and (AP3)

2. When alled on the initial surfae with

boundary M n ft

0

g, it onstruts a anonial

set of g generator pairs, in time O(gn).

Proof. Before desribing the atual en-

Page 6



hanement of MP, we impose some restritions

on the traversal and the approah paths, and

introdue some primitive operations that fail-

itate the desription of the algorithm.

We require that, during the traversal of the

surfae, the next triangle visited in a all of

MP on S is inident upon the approah path

aperture h

APA

, ontained in the boundary B

of S. Furthermore, we require that approah

paths do not interset verties of M.

A basi operation is that of loning an ap-

proah path. Cloning an approah path 

AP

,

direted from p

0

to its terminal vertex on the

approah path aperture h

APA

, amounts to on-

struting a PL-path from p

0

to h

APA

, with the

same ombinatorial struture as 

AP

(i.e., in-

terseting the same sequene of edges and faes

of M). This lone should not share any point

with already onstruted approah paths or

generators, apart from p

0

. To avoid ambigu-

ities, we assume that a lone runs to the left

of its original. In view of ondition (AP1), any

approah path an be loned, and loning an

even be repeated on lones.

Furthermore, we employ the notion of rout-

ing a PL-urve along (part of) the free bound-

ary of a PL-ollar. This operation is similar

to loning, in that we onstrut a PL-urve in-

side the PL-ollar, whih has the same ombi-

natorial struture as (a sub-path of) the free

boundary of the ollar. We require this urve

to be disjoint from already onstruted gener-

ators and approah paths, whih is possible in

view of onditions (AP1) and (AP3).

Now onsider a regular extension. Set the

approah path aperture h

0

APA

of S

0

= Snftg to

one of the half-edges in the boundary of t, not

inident upon B (e.g. h

3

in Figure 4). Aord-

ing to (AP2), there is a line segment s = pp

0

onneting the terminal vertex p of 

AP

with

a point p

0

inside t and on the free boundary of

the ollar of S. Let q be a point on h

0

APA

not

belonging to the ollar of S. Suh a point ex-

ists, sine h

0

APA

does not belong to B, and sine

the PL-ollar of S only intersets faes inident

upon B. Extending 

AP

with pp

0

and p

0

q, we

obtain an approah path 

0

AP

for S

0

satisfying

v

1

v

2

v

s

v

l

v

r

v

1

v

2

v

s

v

l

v

r



AP



0

AP



AP

Figure 6: Splitting extensions upon visit of tri-

angle t = v

1

v

2

v

3

. Top: Snftg is not onneted.

Bottom: S n ftg is onneted, so a pair of gen-

erators is onstruted.

(AP1). Furthermore, sine q does not belong

to the ollar of S there is a line segment qq

0

,

with q

0

on the free boundary of the ollar of S

0

,

that is disjoint from the ollar of S. In other

words, (AP2) holds for S

0

. Sine we do not

omplete any generators, (AP3) also holds for

S

0

. The enhaned version of a regular exten-

sion obviously takes O(1) time. It remains to

onsider a splitting extension. If S

0

= S nftg is

disonneted, and both g

l

and g

r

are positive,

we onstrut a lone 

0

AP

of the approah path



AP

. Now we extend 

0

AP

to the half-edge v

1

v

s

of B

l

, and we extend 

AP

to the half-edge v

s

v

2

of B

r

(the notation is as in Setion 2); See Fig-

ure 6, Top. Arguing as in the ase of a regular

extension, we onlude that onditions (AP1),

(AP2) and (AP3) hold for the onneted om-

ponents S

l

and S

r

of S

0

, with approah path

apertures v

1

v

s

and v

s

v

2

, respetively. If g

l

or

g

r

is zero, we just extend the approah path to
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the non-visited part of positive genus in O(1)

time. Cloning only needs to be done in ase

the genus of both non-visited parts is less than

the genus of S, whih happens at most g � 1

times. Therefore, the overall omplexity of all

splitting extensions of this type is O(gn).

Finally, onsider a splitting extension in

whih S

0

= S n ftg is onneted. Now we on-

strut four disjoint lones 

1

, 

2

, 

1

and 

2

of 

AP

, whose respetive end-points p

1

, p

2

, p

1

and p

2

, our in this order on the approah

path aperture h

APA

between v

1

and the end-

point of 

AP

. The approah path 

AP

is now

extended to the half-edge v

s

v

2

, see Figure 6,

Bottom. As before, we an do this in suh a

way that (AP1), (AP2) and (AP3) holds for

S

0

. Finally, we omplete a pair of generators

by onneting the end-points of 

1

and 

2

with

the end-points of 

1

and 

2

, respetively, by

two urves �

1

and �

2

; See Figure 6, Bottom.

More preisely, let F and F

0

be the free parts of

the ollars of S and S

0

. Then �

1

is a PL-urve

obtained by onneting p

1

to a point near v

1

on

v

1

v

s

by a urve inside t, and subsequently rout-

ing it along the part of F near v

1

�

! v

l

�

! v

s

and along the part of F

0

near v

s

�

! v

1

, and,

�nally, onneting it to p

1

. Furthermore, �

2

is a PL-urve obtained by onneting p

2

to a

point near v

1

on v

1

v

s

, and subsequently rout-

ing it along the part of F

0

near pv

1

�

! v

l

�

! v

r

,

then along the part of F near v

l

�

! v

s

, letting

it traverse t near v

s

, then routing it along the

part of F

0

near v

s

�

! v

1

, and, �nally, onnet-

ing it to p

2

by a urve inside t. Obviously, �

1

and �

2

do not interset the free boundary of

the ollar of S

0

. Furthermore, it is easy to see

that these urves an be onstruted in suh a

way that they are disjoint from any generators

or approah paths already onstruted.

The time omplexity of this splitting oper-

ation is O(n), sine the generators share only

a onstant number of edges and verties with

eah edge and fae of M. Sine there are ex-

atly g splitting extensions of this type, the

overall time omplexity is O(gn). �

The main theorem is a straightforward onse-

quene of Lemma 6.

5 Brahana's algorithm

The inverse of a path p is denoted by {(p) or

p

�1

, and for a set of paths S we denote the set

S [ {(S) by

^

S.

Let G be a maximal subgraph of the

vertex-edge graph of M suh that M n G is

onneted, and let T

G

be a tubular neighbour-

hood of G in M. By onstrution, M n T

G

is a topologial disk and G is a deformation

retrat of T

G

. Therefore a set of generators

of the fundamental group �(G;x) of G at x

is also a set of generators of the fundamental

group �(M; x) of M at x. We an deompose

our method into three steps:

1. First we onstrut a set G of (2g) gener-

ators of �(G;x), assoiated with a set E of

(2g) direted edges of M under a bijetion

` : E ! G, and a yle � of

^

E suh that for

e 2

^

E:

`(�(e))`(�

2

(e)) : : : `(�

4g

(e)) � �

x

(�)

in �(M; x). Here �

x

is the trivial path at x.

2. Seondly, we transform in O(gn) time

the set G into a set H of generators x

i

; y

i

of �(G;x), eah of linear omplexity, suh

that a loop in H is homotopi (in G) to the

onatenation of O(g) loops in

^

G, and the

relation satis�ed by the x

i

; y

i

in �(M; x) is in

'anonial form', i.e.

[x

1

; y

1

℄ � � � [x

g

; y

g

℄ � �

x

: (��)

As usual, [x

i

; y

i

℄ is the ommutator

x

i

y

i

x

�1

i

y

�1

i

, and � denotes path-homotopy.

3. Finally, we show how to onstrut in O(gn)

time a anonial set of generators x

�

i

; y

�

i

of

�(M; x) suh that x

i

� x

�

i

and y

i

� y

�

i

in T

G

.

Step 1. We onstrut a spanning tree T of

G rooted at x. Let E denote the set of non-

tree edges in G; Eah edge in E is oriented

arbitrarily and eah edge in T is oriented to-

wards the root. Without loss of generality

we assume for onveniene that there is only

one edge e

sink

of the tree inident upon x: For

eah (direted) edge e 2

^

E we onsider the

shortest edge-path 

e

= ee

1

e

2

� � � e

sink

from e

to x in T . By onstrution, for e 6= e

0

the

paths 

e

and 

e

0

oinide only on a proper suf-

�x sub-path, i.e., both paths an be deom-

posed as 

e

= �

e;e

0



e;e

0

and 

e

0

= �

e

0

;e



e

0

;e

,
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where 

e;e

0

= 

e

0

;e

and �

e;e

0

and �

e

0

;e

are disjoint

exept at their sink v(e; e

0

). One an hek

that the relation on the edges in

^

E de�ned by

e � e

0

if the sink edges of �

e;e

0

, �

e

0

;e

and the

soure edge of 

e;e

0

are in ounterlokwise or-

der around their ommon endpoint v(e; e

0

) |

with respet to the hoie of an orientation of

the surfae M | is a transitive relation.

Let now `(e) be the loop with basepoint x

obtained by onatenation of the loops {(

e

)

and 

{(e)

, removing one of the two our-

renes of e

�1

, i.e., `(e) = {(

e

)

{(e)

: Note that

`({(e)) = {(`(e)): The set G := `(E) is a

set of (2g) generators of �(G;x), and onse-

quently of �(M; x). Furthermore, the unique

relation in �(M; x) satis�ed by these genera-

tors is (�), where the operator � is de�ned by

�(e) =  Æ {(e). Here  (e) is the suessor of

e with respet to the irular order on

^

E, in-

dued by the linear order � :

Step 2. We use a sequene of Brahana

transformations, f [8℄. Let `

i

= `(�

i

(e))

for some e 2

^

E, and let M be the loop

`

1

� � � `

4g

: The loop M an be deomposed into

aX

1

bX

2

a

�1

X

3

b

�1

X

4

; where a and b are loops

in

^

G, and X

4

is nonempty (unless X

1

;X

2

and

X

3

are empty, in whih ase we are done). If

X

1

;X

2

;X

3

are not all empty we replae the

loops a and b by the loops x = aX

1

bX

2

a

�1

(onsequently b

�1

= X

2

a

�1

x

�1

aX

1

) and

y = X

3

X

2

a

�1

(a = y

�1

X

3

X

2

) to obtain

suessively M �

x

z }| {

aX

1

bX

2

a

�1

X

3

b

�1

X

4

�

x

y

z }| {

X

3

X

2

a

�1

x

�1

aX

1

X

4

� [x; y℄X

3

X

2

X

1

X

4

�

X

3

X

2

X

1

X

4

[x; y℄.

If X

1

;X

2

;X

3

are all empty, then we simply set

x = a, y = b. In both ases M � M

0

[x; y℄

where M

0

is the onatenation in some order

of the loops in

^

G nfa; a

�1

; b; b

�1

g, and where x

and y are loops omposed of O(g) generators

in

^

G: The loops a and b and their orrespond-

ing edges in

^

E are said to be onverted. Af-

ter j suh transformations we have onverted

a set G

j

of 2j generators in G into a set H

j

of 2j generators x

1

; y

1

; x

2

; y

2

; : : : ; x

j

; y

j

, suh

that M �M

j

[x

1

; y

1

℄ � � � [x

j

; y

j

℄: Here M

j

is the

onatenation in some order of the loops in

^

G n

^

G

j

. For j = g we obtain generators whih

satisfy (��), but whose total omplexity is only

in O(g

2

n:)

We now explain how to redue the omplex-

ity of these loops by homotopy to O(gn): First

we examine how the relation � =  Æ { is tran-

formed. For j � 0 and for e 2

^

E n

^

E

j

we de�ne

 

j

(e) to be the �-suessor of e in

^

E n

^

E

j

, and

�

j

(e) to be the edge e

0

suh that the suessor

of `(e) in M

j

is `(e

0

):

Lemma 7 �

j

(e) =  

j

Æ {(e).

Proof. We prove the result by indution.

The ase j = 0 follows from the de�nition of

�. Let a and b be the loops onverted at step

j+1: One has M

j

= aX

1

bX

2

a

�1

X

3

b

�1

X

4

and

M

j+1

= X

3

X

2

X

1

X

4

. Let e

0

= �

j+1

(e). If e

0

=

�

j

(e), then e

0

=  

j

({(e)) =  

j+1

({(e)), sine e

and e

0

are not onverted at step j +1: Assume

now that e

0

6= �

j

(e), and let e

k

i

for k = 1; 2 and

i = 1; 2; 3; 4 be de�ned by X

i

= `(e

1

i

)X

0

i

`(e

2

i

)

if X

i

is non empty. The pair (e; e

0

) oinides

with one of the pairs (e

2

k

; e

1

k

0

) where k preedes

k

0

in the order 3,2,1,4. For example if e = e

2

3

and e

0

= e

1

2

then  

j

({(e

2

3

)) = �

j

(e

2

3

) = {(b)

and  

j

({(b)) = �

j

(b) = e

1

2

= e

0

. Therefore,

 

j+1

({(e)) = e

0

. The other ases are similar. �

We are now ready to derease in op-

timal time the omplexity of the loops

x

i

; y

i

: Assume that x

j

= `(a)`(b) � � � `(z)

and let s(x

j

) be the loop de�ned by

{(

a

)`({(a); b)`({(b); ) � � � `({(y); z)

{(z)

; where

`(e; e

0

) is the onatenation of the two paths

�

e;e

0

and {(�

e

0

;e

): Clearly x � s(x), and the

size of s(x), i.e., its number of edges in M,

is in O(n). Starting from its soure e, we an

visit the edges of `(e; e

0

) in time proportional to

its size if we an determine eÆiently the ver-

tex v(e; e

0

). In view of Lemma 7 this an easily

be done in O(1) time, provided we maintain

for eah node v of the tree T the �-ordered

list L

j

(v) of edges e 2

^

E whose orresponding

loops have non yet been onverted, and whose

assoiated paths 

e

lie along v. The lists L

0

(v)

are easily reated in O(gn) time, and updated
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in O(n) time, eah time an edge is onverted

by a traversal of the orresponding loop.

Step 3. Omitted from this version.

6 Implementation

We have implemented both the inremen-

tal and Brahana's algorithm in C++, using

the CGAL polyhedron data struture. Being

purely ombinatorial, the implementation does

not present partiular diÆulties. It an be

seen that the anonial set of PL-loops an be

drawn without verties interior to faes. In

pratie, a PL-loop is spei�ed by the list of

edges it rosses. Also, eah edge of the ombi-

natorial surfae points to the list of loops it is

rossed by. In order to visualize the PL-loops,

we uniformly insert in eah edge a number of

points equals to the size of its list. We then

link these points aording to eah loop list.

In Setion 4 we always visit a triangle ini-

dent to the approah path aperture. In pra-

tie, we an hoose any triangle inident to

the boundary and keep the same omplex-

ity. In our implementation we use a `potato

peeling' traversal. This heuristi produes

nier loops. Experimentation shows that Bra-

hana's algorithm generally produes urves

with lower omplexity (total number of seg-

ments). However the inremental method may

be ompetitive when the initial set of gen-

erators in Brahana's method satis�es a re-

lation `lose' to the other anonial form:

a

1

b

1

a

2

b

2

: : : a

g

b

g

a

1

b

1

: : : a

g

b

g

. In this ase, the

�nal generators are indeed expressed as 
(g

2

)

initial generators.
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Addendum

1

Here we omment on both our algorithms, applied to the pelvis bone data set. When omput-

ing a anonial polygonal shema with Brahana's algorithm (See Setion 5), only one Brahana-

transformation is needed. The total size of the omputed loops is 513 edges.

The initial loop M (beginning of step 2 in Brahana's algorithm) turns out to be:

(+0)(�5)(�0)(+1)(�2)(�1)(+2)(+3)(+5)(�4)(�3)(+4)

In the notation of Setion 5, the algorithm takes a = (+3) and b = (+5). The �rst part of the

Brahana transformation is:

x = aX

1

bX

2

a

�1

= (+3)(+5)(�4)(�3);

so X

1

= �, X

2

= (�4), X

3

= (+4)(+0), and X

4

= (�0)(+1)(�2)(�1)(+2). Thus M beomes:

(+0)(+1)(+2)(�1)(�2)(+x)(+3)(�x)(+4)(�3)(�0)(�4):

The seond part of this Brahana transformation orresponds to the hoie y = X

3

X

2

a

�1

=

(+4)(+0)(�4)(�3), and M beomes (See Figure 8):

(+0)(�4)(�0)(+1)(�2)(�1)(+2)(+x)(+y)(�x)(�y)(+4)

Figure 8: Brahana's algorithm. Left: G and its spanning tree T . Middle and right: the orrespond-

ing loops and the anonial set of PL-generators during and after one Brahana transformation. The

olor oding is: 0 $ red; 1 $ green; 2 $ purple; 3 $ blue; 4 $ yellow; 5 $ orange.

The iterative method, on the other hand, omputes a anonial polygonal shema onsisting of a

total of 1126 edges. Figure 9 shows the �rst splitting extension, and the �rst ouple of assoiated

loops.

Finally, we show the output of both algorithms on the pelvis data set; See Figure 10.

1

Not part of the submission for the proeedings
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Figure 9: Iterative method. Left: the �rst splitting extension and the join-path. Right: the

orresponding loops.
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Figure 10: Output of our algorithms on the pelvis data set. Top: The inremental method. Bottom:

Brahana's method
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