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Abstract

Let G be a graph cellularly embedded on a surface. We considerrtinden of determining
whetherG contains a cycle (i.e. a closed walk without repeated vesjiof a certain topological
type. We show that the problem can be answered in linear tinemhe topological type is one of
the following: contractible, non-contractible, or norpaeating. In either case we obtain the same
time complexity if we require the cycle to contain a giventegr On the other hand, we prove that
the problem is NP-complete when considering separatinglitisg cycles. We also show that
deciding the existence of a separating or a splitting cy€tlermgth at most is fixed-parameter
tractable with respect th plus the genus of the surface.

1 Introduction

Topological graph theory studies combinatorial embedslioiggraphs on surfaces. This includes the
design of efficient algorithms for finding optimal cycles kvitertain topological properties. This last
subject has received much attention since Thomassen demoinkaTho90] to extract a shortest cycle
in a family of cycles satisfying the so-call@dbath condition (see also Mohar and Thomassen [MIT01,
Chapter 4]). Recent progress include polynomial-time @tigms for the shortest (possibly closed)
walk homotopic to a given (possibly closed) walk [CdVIE10]the shortest contractiblé [Cabi10],
non-contractible, or non-separating cycdle [EHH04, CCOZdWL 104a]. In contrast, it is NP-hard to
find a shortessplitting (separating but non-contractible) cycle [CCdM#g], a shortest separating
cycle [CablD], a shortest contractible cycle through amgiwertex [Cabl0], or a shortest cyd®-
homologous to a given closed walk [CENO09].

In this paper we consider the simpler problem of decidinghéré exists a cycle of a certain
topological type in a given surface-embedded graph, witlamy optimization objective. Here, a
cycle is a closed walk without repeated vertices; lookingdiosed walks instead of cycles would
make the problem trivial. We may require this cycle to camntaigiven vertex or not. We emphasize
that we considecellular graph embeddings, where each face is an open disk. Newsshel given
edge may have the same face on both of its sides.
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We exhibit a strong dichotomy in the complexity of these peats, depending on the topological
type required. As it turns out, there are linear-time alpons when the corresponding optimization
problem has a polynomial-time algorithm. This is the casecémtractible, non-contractible, or non-
separating cycles. On the other hand, we again obtain Ndhbss for splitting or separating cycles,
as in the optimization version of these problems. For th@ses, we also propose algorithms to
decide the existence of a separating or splitting cycle oftle at mostt, whose complexities are
polynomial whenk and the genus of the surface are fixed. We emphasize thatgumants quite
differ from the ones used in the above cited papers [EHPO¥ET@,[CCO7| CCdVE08,[CEND9,
Cabl0[ CCdVL10a] and are more inclined towards basic gragbry.

Our Results. Let G = (V,E) be a graph cellularly embedded on a surfaepossibly non-
orientable. Let be the total number of vertices and edges-of

Theorem 1. Wecan determinein O(n) timeif G admits:
1. acontractible cycleon S,
2. acontractible cycle on S passing through a given vertex,
3. anon-contractible cycle on S passing through a given vertex,
4. anon-segparating cycle on S passing through a given vertex,
and return one such cycle if it exists.

Note that the last two problems become rather trivial if wendbenforce the cycle to contain a
given vertex. Indeed, i is not a sphere, then any cycle in a cut graph (see the nexorsdot a
definition) is non-separating, hence non-contractible.

Theorem 2. Deciding the existence of a cycle in G of any of the following type is NP-complete:
1. separating on S,
2. splittingon S,
3. separating on S and passing through a given vertex of G,
4. splitting on S and passing through a given vertex of G.

We mention that (1) answers negatively to an open probleseddy Mohar and Thomassén [MT01,
Problem 4.3.3(b)]. As a side note, (1) reduces to (3) (andasiy (1) reduces to (4)) usinGook re-
ductions: to solve (1), simply solve problem (3), taking each vertexan turn, and similarly for (2).
However, NP-completeness is defined in termKarfp reductions, which is more restrictive. It is not
clear a priori that (1) reduces to (3) by Karp reductions, elgmwvhether an instance of (1) can be
transformed to an instance of (3) such that the answer isdime ®n both instances. Therefore, (3)
and (4) do not follow trivially from (1) and (2).

We finally propose algorithms for parameterized versiortho$e NP-complete problems relying
on the color-coding approach of Alon et al. [AYZ95].



Theorem 3. Let £ > 1 be an integer, and let s be a vertex of G. There is an algorithm that in
20(9+k)| E| log |V | time decides if G has a separating, respectively splitting, cycle on S through s of
length at most k& and reports one, if one exists. There is a randomized algorithm for the same problem
that needs 2€(9+)| | time in the worst-case and returns the correct answer with probability at least
2/3.

By running this algorithm once for every choicesxfwe can drop the basepoint condition.

Corollary 4. We can decide if G has a separating, respectively splitting, cycle on S of length at most
k and report one, if one exists, in 209 +K) | E||V|log |V | time.

2 Background

We review some basic terminology and properties of graplistlagir embedding on surfaces. We
follow standard graph theory terminology, as in the book Bs¥WWWesO0lL]. All the considered graphs
may have loops and multiple edges. cycle in a graph is a closed walk without repeated vertices.
A loop is a closed walk with one distinguished vertex,btsepoint. All walks are oriented; given a
walk w, we denote byv—! the same walk with the opposite orientation.

Blocks. LetG = (V, E) be a graph. Thelocks of GG are its subgraphs induced by the classes of the
following equivalence relation on its sétof edgese ~ ¢’ if there is a cycle inG that contains both
ande’. The blocks of& can be determined i@ (| E|) time using depth-first search. (See West[Wes01,
p. 157]).

T-loops, T-cycles, and cycle group. Let T be a tree inG ands be a vertex ofl’. To every edge
of G with endpoints ori” we can associate the loaf7’, s, e) composed of the path il joining s to
an endpoint ok, the edgez, and the path if” joining the other endpoint af to s. We call(T), s, e)
theT-loop associated te; the vertexs is thebasepoint of the T-loop.

We can also associate tathe closed walk- (7', e) composed ot and the path irf" joining the
endpoints ot. If e is not an edge of’, 7(T', e) is called thel'-cycle associated te.

An even subgraph is a subgraph ofr, each vertex of which has even degree. An even subgraph is
thus a disjoint union of Eulerian subgraphs. The set of eubgrmaphs form an Abelian group, where
the sum corresponds to the symmetric difference of the evegraphs. This group is called thgcle
group of G. When@ is connected and is a spanning tree af, it is again part of the folklore that
the set ofl'-cycles associated to the setabbrds E(G) \ E(T) form a basis of the cycle group 6f.

Surfaces. We only consider surfaces without boundariessuiface (or 2-manifold)S is a compact,
connected, topological space where each point has a nelgitsb homeomorphic to the plane.
A surface is homeomorphic to a sphere where either:

e g > 0 open disks are removed and a handle is attached to eachimgsirtle, or
e g > 1 open disks are removed and a Mobius band is attached to esaltimg circle.

The surface is calledrientable in the former case anabn-orientable in the latter case. In both cases,
g is thegenus of the surface.



Celular graph embeddings. A graphd is celularly embedded on a surfaces if every open face
of (the embedding offz on S is a disk. As it is customary, we will assume that the inpupbsare
cellularly embedded. (At some intermediary steps we mag lgaaphs that are not cellularly embed-
ded.) Following Mohar and Thomasseén [MT01], the embedding @an be encoded by adjoining
to the data of7 arotation system and asignature. The rotation system provides for every vertex in
V' a cyclic permutation of its incident edges and the signatissgns a sign to every edge to indicate
whether the rotation systems of its endpoints are compadibhot. Storing a cellular embedding takes
a space linear in theomplexity of G, that is, in its total number of vertices and edges.

A facial walk of GG is then obtained by the face traversal procedure describfddT01, p. 93].
Every face corresponds to two opposite facial walks. We mdll differentiate these two opposite
facial walks and will refer tdhe facial walk of a face as any one of its two facial walks.

An edgee of an embedded grapi may be incident to two distinct faces or to a single face. In
the former case; is calledregular andsingular in the latter. Note that a regular edge appears exactly
once in each facial walk of its incident faces, while a siag@ldge appears twice, with or without the
same orientation, in the facial walk of its incident face.

There are data structures to maintain and operate effigiitth embedded graphs, like for exam-
ple the gem representation [Epp03, Lih82]. With such dat&sires we can traverse the neighbors
of a vertex in time proportional to its degree, obtain a fas@k in time proportional to its length, or
cut the surface along a path or cycle in time proportionatstdeingth.

Duality. LetG be a graph embedded on a surfécdts dual graph, denoted byG*, has for vertices
the set of faces aff and for edges the set of edges (dualfg)~): two faces are adjacent if they share
an edge of7. The edge dual te is denoted by*, and it connects the two faces adjacent ia the
embedding. An edge dual to a singular edge is a loop edge. $&iraf edgest C E(G), we use the
notationA* = {e* | e € A}.

Homotopy and Homology. Let G be a graph embedded in an ambient sp&céor example, a
surface). Two loops i~ with basepoint arehomotopic in X if one can be deformed continuously to
the other withinX, keeping the basepoigtfixed during the deformation. The equivalence classes of
homotopic loops are calldibbmotopy classes, and we usé«) to denote the homotopy class containing
the loopa. The homotopy classes form a group, where the multiplicatiche group corresponds to
the concatenation of the loops. Its unit is the setaftractible loops, i.e., the set of loops that are
homotopic to the constant loop. When the ambient spacea surfaces where the graph is cellularly
embedded, we denote this groupby(S, s). Indeed, the fact that is cellularly embedded implies
that this group, called thiendamental group of S, depends only on the surfade When we regard-

as a 1-dimensional complex and taketself as the ambient space, we obtain the fundamental group
of G, denoted byr, (G, s). If G is connected and’ is a spanning tree df, it is a well-known fact
that the set off-loops with basepoint associated to the set of chor8G) \ E(T") form a basis of

™1 (G, S).

Let G be a graph embedded in a surfaeTheboundary graph of a facef of GG is the even sub-
graph ofG induced by the union of edges of the facial walkfobccurring exactly once in this facial
walk. Two even subgraphs are sammologous if their sum in the cycle group aF is equal to the sum
of the boundary graphs of some faces. The equivalence slatbsemologous even subgraphs, called
homology classes, form an Abelian group under the symmetric difference. Eajently, this group,
called thehomology group, can be defined as the quotient of the cycle grouf bl the subgroup



of even subgraphs homologous to the empty graph. In paaticalgenerating family for the homol-
ogy group can be obtained by taking the homology classes aéis bof the cycle group aF. It can
actually be shown that the homology group depends only osuhaceS and not on the embedded
graphG; we therefore denote this homology group By(S). (This is known asZs-homology in
algebraic topology, but it is the only homology we will dedthw)

Every loop inG without repeated vertices forms a cycleGh It turns out that such a loop is
contractible if and only if the corresponding cycle bounddisk in S. In this case, we say that the
cycle iscontractible. A cycle inG is separating if the surface is disconnected by cutting it along that
cycle. Itis a well-known fact that a cycle separates a serfiaand only if its homology class is trivial.
A cycle is splitting if it cuts the surface into two components, neither of whishaidisk. In other
words, a splitting cycle is a separating and non-contrbectiigcle.

If H is a subgraph of7, we will denoteS\\ H the surface obtained after cuttirfy along H.
Thedual graph of S\\H has for vertices the set of faces @Gfand for edges the (dual) set of edges
E(G) \ E(H): two faces are adjacent if they share an edge that is ngt itf S\\ H is a topological
disk, thenH is called acut graph. A cut graph isspanning if it contains all the vertices of5.

In this case, the dual graph &f\ H is a tree. A spanning cut graph can be computed in linear
time [CCAVLI0b| Epp03].

A homology basis of{;(S) can be computed as follows. L&t be a subgraph off that is a cut
graph, and lef” be a spanning tree df. The set ofl’-cycles associated to the set of chofd&d ) \
E(T) form a homology basis fof. Said differently, a homology basis &f;(S) can be obtained
from a homology basis of a cut graph. From Euler’s formulis @asily derived that a homology basis
has2g (respectivelyg) cycles if S is an orientable (respectively non-orientable) surfacgesfusg.

A homology class can thus be represented by a vect@?(gf bits, where each bit stands for the
occurrence of a basis cycle in this sUm [EWO05, Section 4]. \lleuge [«] to denote the bit vector of
the homology class of an even subgragltand used to make the bitwise sum between classes. Thus,
if an even subgraph is the symmetric difference of two even subgraptendd/, then[3] = [a]®[a].

SupposeH is a spanning cut graph. L&t be a spanning tree df, hence ofG. We can compute
the bit vectors of the homology classes of heycles associated to the edges:bés follows. The bit
vector of theT-cycle associated to an edgeDiis obviously the zero vector. The homology class of
theT-cycle associated to an edgefiiH) \ E(T') has one non-zero bit for this-cycle. Now, cutting
S along the cut grapl#l yields a diskD. SinceH is spanning, every edgev in E(G) \ E(H) has
its endpointsu andv on the boundary oD); therefore, the homology class of T, uv) is the mod 2
sum of the bit vectors of the walk connectingandv on the boundary of the disk (both possible
choices will give the same result). Assume one of the twogsiesf D cut alonge = uv is a single
face f of G; we may compute the bit vector efas indicated above, by running along the boundary
of f. Then we removg and recurse on the digR \ f. Therefore, the following lemma holds.

Lemma 5 (See also[I[ENT11, Lemma A.1.])Me can compute the homology class of all the T-cycles
associated to the edges of G in O(g|E|) time.

3 Contractible cycles

In this section we prove pointEl(1) arid (2) of Theofém 1: wedstermine in linear time if7 contains
a contractible cyck® The same is true if we impose the contractible cycle to éordgagiven vertex

"Note that the problem becomes trivial for a graph embeddéuface-width at least two since, in this case, all the facial
walks are cycles. SeE IMTD1, Prop. 5.5.11].



Figure 1: A cellular embedding of a graph without contrdetitycle.

of G. Figure[l shows a simple example of graph embedding withonitractible cycle. Recall that
an edge is regular if it is incident to two distinct faces. Huges ofG can be classified as regular
or singular in a simple traversal of all the facial walks: eslgppearing once (resp. twice) in a facial
walk can be marked regular (resp. singular). This cleatkgddinear time by assumption on the
data-structure for storing the embedded gréph

Lemma 6. Let e be a regular edge of a face F' of G. Then e belongs to a cycle of G whose edges
appear in the facial walk of F'. Moreover, such a cycle can be extracted in time proportional to the
length of the facial walk of F'.

Proof. Consider the subgrapfir of G induced by the edges of the facial walk Bf Sincee is
regular, the complementary walk efin this facial walk does not use Hence, the graptrr — e is
connected and we can extract from this graph a path betweegntiipoints ot to form a cycle with
e. O

We denotec(F, e) the cycle extracted by the above procedure. The followingne is a direct
consequence of the Jordan curve theoflem [MTO1, p.25].

Lemma 7. Let e bearegular edge incident to a face £'. Assumethat £ is contained in a closed disk
of S bounded by a cycle of G. Then, the cycle ¢(F, e¢) bounds adiskin S.

Given a vertex, we construct a set of cyclé€gs) as follows. For every fac& incident to at least
one regular edge, we add®s) the cyclec(F, e), wheree is an arbitrary regular edge incident ko
Clearly,C(s) can be constructed in time proportional to the complexityzofAlso, since every edge
of ¢(F, e) is incident toF’, we remark that any edge 6f may appear in at most two cyclesdis).

We also defin€ as the set composed of a cycle of the farth, e) for every faceF' of G whose
facial walk contains some regular edge Again, C can be constructed in time proportional to the
complexity ofG.

Lemma 8. G contains a contractible cycle through s if and only if some cyclein C(s) is contractible.
Smilarly, G contains a contractible cycle if and only if some cyclein C is contractible.

Proof. Since every cycle i€ (s) containss, the “if” condition of the first equivalence is trivial. On
the other hand, suppoge has a contractible cyclethroughs. Let e be an edge of incident tos.
Sincec bounds some disk in S, the edge: must be regular and must have an incident fade D.
By construction(C(s) contains a cycle(F,¢’) for some regular edg€. By LemmdY, this cycle is
contractible. The proof for the second part of the lemma igedp similar, dropping the condition on
s and replacing(s) by C. O



Lemma 9. C(s) contains a contractible cycle if and only if thereis a disk in S whose boundary is a
cycle of C(s) and whose interior is digoint from the cycles in C(s). The same is true if we replace
everywhere C(s) by C.

Proof. Consider a contractible cycléF,e) € C(s). It bounds a closed disk onS. We choose this
cycle so as to minimize the number of face<®in D. Consider another cycl F’,¢') € C(s). We
claim thatc(F”,e’) does not cross the interior @. Indeed, suppose for the sake of contradiction
that an edge: of ¢(F”’,¢’) is interior to D. Then the faces incident 1@ one of which isF”, must

be contained inD. Soc¢(F’,¢’) would also be contained i. By LemmalY, this would be in
contradiction with the minimality oD. A formal substitution ot for C(s) proves the second part of
the lemma. O

Proof of points (@) and @) of Theorem. We prove [2). Again, a proof off1) can be obtained by a
formal substitution o€ for C(s).

By LemmalB, it suffices to test if one of the cyclesdfs) is contractible. By LemmAl9, this
happens if and only if one component of the surf&aaut throughuC(s) — the set of edges in at least
one cycle inC(s) — is a disk whose boundary is a cycle@(fs). This can be checked in linear time as
follows. First label each edge 6f with the cycles of’(s) that contain this edge. As remarked above,
an edge can get at most two labels. Cuttththrough the edges of the cyclesdfs) takes linear time
and we can extract the components that are disks by lookittgeat Euler characteristic. For each
disk component, we can easily check in constant time per iéd$jehe boundary edges share a same
label, i.e. if this component is bounded by a cycl€g). O

4 Non-contractible and non-separ ating cycles

In this section we prove pointEl(3) arid (4) of Theofém 1: wedstermine in linear time if7 contains
a non-contractible cycle or a non-separating cycle thrauglven vertexs.

Let T be a spanning tree @f. Denote byC* the subgraph of the dual grajf with the same
vertex set as7* and edge seE(G*) \ E(T)*. The following lemma appears in our former pa-
per [CCdVL10b, Cor. 2].

Lemmal0. Lete € E(G) \ E(T). TheT-cycle 7(T, e) isseparating on S if and only if C* — e* is
not connected. The T'-cycle 7(T', ) is contractible if and only if C* — e* has a connected component
that is a tree (possibly reduced to a single vertex).

Proof of point @) in Theorem[l Remark that, by definition of a block, any cycle @ through the
given vertexs is contained in a single block @f. We can thus restrict the search of a non-contractible
cycle to the union of the blocks a¥ incident tos. Call H this union. Next we will see that the
following two statements are equivalent:

e there exists a non-contractible cycle through H;
e there exists a non-contractible cyclekih

Indeed, suppose is a non-contractible cycle i that does not contair. We exhibit a non-
contractible cycle through in H. As remarked abovey is contained in a single blocB C H.
Still by definition of a block, there exists a cyatec B throughs and some edge of. Letp be the
subpath ot betweens and the first encountered vertexof ¢ in . Similarly, letq be the subpath of



¢! betweens and the first encountered vertgxf ¢~! in 4. The vertices: andy cut+y into two paths
a andg. The two cyclep -« -¢~ ! andp - 3-¢~! contains and one of them must be non-contractible,
since otherwisey = 3 - ! would also be contractible.

In order to test ifH has a non-contractible cycle, we compute a spannindltreeG that extends
a spanning tree off. Since the fundamental group (H, s) is generated by the loops(T), s, €),
fore € H \ T, the graphH has a non-contractible cycle if and only if one of thé&Sdoops is
non-contractible. Equivalently, one of the correspondifigycles should be non-contractible. From
LemmalID,r(T,e) is contractible if and only iiC* — e* has a connected component that is a tree.
The dual edges* satisfying this condition are exactly those that are rerdovéen “pruning” the
graphC™, by iteratively removing degree-one vertices with thegident edge. Therefore, we can test
in linear time whether there is an edge H \ T satisfying this condition. O

Proof of point @) in Theorem[l Our proof starts literally as the proof of poild (3) in Thewr, re-
placing non-contractible with non-separating. In pafdcuthere exists a non-separating cycle through
s in G if and only if there exists a non-separating cycleHdn the union of blocks incident te. In
order to test this last condition, we first compute a spantieg” of G that extends a spanning tree
of H. As recalled in the background section, fhiecycles associated to the set of chords’ah H
form a basis of the cycle space Bf. Hence,H has a non-separating cycle if an only if one of these
chords has an associatéécycle that is non-zero homologous, i.e. non-separatingmA_emmd_ID,
this holds if and only if the corresponding dual edge doesseparate”™, i.e. is not a bridge irC*.
This can be tested for all the chordal edges in linear timensy finarking the bridges af’*. Recall
that the bridges of a graph are its one-edge blocks and carbthdetermined in linear time. O

5 Separating and splitting cycles

In this section we show Theorelih 2: It is NP-hard to decid€ ifontains separating and splitting
cycles. Our NP-hardness proof is inspired by a former pa@&dVE"08], but is more complicated.
It proceeds by reduction from the following NP-completelppeon: determine whether a given planar
bipartite graphH with maximum degree 3 has a Hamiltonian cyc¢le [IPS82, Lemriig ZActually,
we will not use the fact thall is bipartite.) See Figuld 2 for an overview of the reduction.

Let s be an arbitrary vertex off of degree 3. InH, we replaces with a triangle, as shown in
Figurel3(a-b), obtaining a grapti;. Let one of the three new edges be calledVe mark all vertices
of H, except the three new verticesraguired. The following lemma is easy.

Lemma1l. H hasaHamiltonian cycleif and only if H; hasacycleusing e and all required vertices.

It is convenient, at this point, to fix an embedding /#f on the sphere. Note thathas two
different incident faces it/;. We color one of them in black and the other one in white. Weosund
every required vertex aff; with a ring, as shown in Figuid 4. This creates two or three faeas per
required vertex of{;; we color exactly one of them (chosen arbitrarily) in blacidanother one in
white; the last one, if present, is not colored. Label eadh®k uncolored faces with distinct integers
between 1 and. Splite into three subedges; call one of the extremal subedgesplace the middle
subedge with &(k + 1) x 2)-grid, as shown in Figurlg 3(c), creatinggrid faces; these grid faces are
also labeled with distinct integers between 1 andVe have obtained a new graph, with a planar
embedding, where every face got either a color (black oreyloit a label between 1 aid Moreover,
every label is represented by exactly one grid face and lgxaaé non-grid face.
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(b)

Figure 2: Overview of the reduction from Hamiltonian cyalglanar graphs with maximum degree 3.
(a) An original instance with a solution. (b) The corresponding graph. The disks inside the
faces indicate their color. (c) A part of the correspondingace (only a part of the middle gray area
is shown; it was initially a sphere).

(@) (b) (©)

Figure 3: (a) A degree-3 vertexof H. (b) Replacement of by a triangle to obtairfH;. (¢) Insertion
of the grid on edge to obtainH-.



(@) (b)

Figure 4. Creation of the rings iff;: (a) for a degree-3 vertex; (b) for a degree-2 vertex. (We may
clearly assume thaf has minimum degree 2.)

Now we build the surfaceS; see Figurd]2. First, we remove a disk from every labeled, face
and attachk cylinders to thes@k punctures to connect the pairs of faces with correspondibgls.
Second, we remove disks from every white face, and we attaihgée sphere with boundaries to
them. We similarly attach another sphere with boundari¢eddlack faces.

Lemma 12. H; hasa cycle using e and all required vertices if and only if H, contains a separating
(or splitting) cyclein S.

Proof. Note that a cycley in H, separates if and only if, when we considey in the planar embed-
ding Hs:

e the black faces are on the same side of
¢ the white faces are on the same sideypand
e for each label, the two faces with this label are on the sadediy.

If H, has a cycle using and all required vertices, assume without loss of gengriiit it uses: by
leaving the black face incident withto its left. We transform it to a cycle i/, as follows: within
each ring, modify the cycle so as it still passes through eadiral vertex at most once, and leaves
the black face of the ring to the left and the white face of thg to the right (this is always possible).
Within the grid, modify the cycle so that it leaves a grid fagih labeli to its left if and only if it
leaves the non-grid face labelétb its left. This yields a separating (and even splittinggley
Conversely, consider a separating cyglen H. It must use edge’: otherwise it uses only (1)
grid edges, in which case only grid faces (at least one) amnerof its sides, or (2) non-grid edges,
in which case the black and white faces incident witland all grid faces are on the same sideypf
though all faces cannot be on this side. In both cases itadicts the fact that is separating. Since
separates the black faces from the white fagamaust use a part of all rings of required verticedhf.
Since every ring is separated from the resfffby three edges, it is used at most once. Finally, this
yields a cycle inH; usinge and all required vertices. O

H, is not cellular onS. We now augment it to a grapt; that is cellular orS as follows. Every
face f in H, that is not cellular is a punctured sphere. Put a new vertgerf, and connect it with
one vertex per boundary componentfofFigure[®).

Lemma 13. Any separating (or, in particular, splitting) cyclein Hs belongsto Hs.

Proof. Leta be an edge added fd, to form Hs; that edges has the same face éf; to its left and
to its right, and therefore there is a cyejg on the surface that crossesexactly once and crosses
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Figure 5: Extension ofi; to a cellular graphds.

no other edge of3. A separating cycle crosses any closed curve on the surfae¥em number
of times; hencey, cannot be crossed by a separating cycle; consequenttgnnot be used by a
separating cycle. O

Proof of Theorem[2l These problems are clearly in NP. Statemeliits (1) Bhd (@wadlirectly from
LemmadIN[12, and1l3. Furthermore, every separating oych&;iuses edge’ and its incident
vertices; this prove$13) and (4). O

6 Computing separating and splitting cycles anyway

We now discuss a parameterized version of the last NP-hatdlgmms. Given an integék, decide
whetherG contains a separating, respectively splitting, cycle nfth at most—and report such a
cycle in case of positive answer. These problems again d@dmivariants depending on whether or
not we force the cycle to pass through a given vertex. Usiegctilor-coding approach of Alon et
al. [AYZ95]], we propose randomized algorithms for thesebpems. Henceforth]” will designate a
spanning tree of the gragh. In order to test if a cycle is separating, we shall use thévagnce with
zero-homologous cycles. To this end, we precomputexfig-bit vectors of thel'-cycles associated
to the edges ofs. By Lemmdb, this take®(g|E|) time.

6.1 Separatingcycle

Choose a random-coloringx : V' — {1,...,k} of the vertices ofG. Hence, each vertex gets a
color independently drawn in a bag bfcolors, where each color has probabilityk of occurrence.
Supposé&~ has a separating cycle of length at mbghrough a given vertex. With probability at
leastk!/kF = 2-©(%) the vertices of that cycle get different colors. More gatigra path or cycle in
G is saidcolorful if all its vertices get a different color.

Following Alon et al. [AYZ9%] we use a dynamic programmingpapach to search for a colorful
separating cycle. For this, we consider the following dedayraph?{ with arcs labelled by edges of
G. We refer to the nodes and arcs7gfin order to avoid confusion with the vertices and edge& of
The graphH has nodes of the forrtu, ¢, h) whereu € V' is a vertex ofG, ¢ C {1, ..., k} is a subset
of colors, andh € H;(S) is a homology class. Two nod¢s, ¢, h) and(v, ¢/, g) are linked by an arc
labelled with edge if

¢ the endpoints of areu andv,
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e k(v) € candd = cU{k(v)}, and
o g=ha|[7(T,e)], where[r(T,e)] is the homology class ifl;(S) of theT-cycler(Te).

The graphH has2* - 20(9) . |V| nodes since a homology class is represented b9 @n-bit vector.
The number of arcs of{ is at most2* - 209 . | E| since, forc andh fixed, the total number of arcs
outgoing from the set of nodggu, ¢, h) },ev is at mosty_ . (degree ofu in G).

Lemmal4. Let / beaninteger, 1 < ¢ < k. Thereisa separating colorful cyclein G through s that
has length ¢ if and only if there is a directed path of length ¢ in H from (s, (), 0) to a node (s, ¢, 0) for
somec C {1,...,k}.

Proof. If there is a directed path i from (s, (),0) to a node(s, ¢, h), then, projecting onto the first
coordinate of the nodes, we obtain a loopn G with basepoints, of the same length. Furthermore,
the homology clasBu] is preciselyh. By the way how we defined arcsi, all the vertices ofv have
different colors, sav is actually a cycle. This proves the “if” part. The conversehown analogously:
every colorful path cycle iz “lifts” to a path of the same length K. O

Lemma 15. Given a k-coloring of G, we can decideif G contains a colorful separating cycle through
s of length at most & and report one, if one exists, in 2°W+%) | | time.

Proof. We can compute and store for every edge a vectap(@f) bits that encodes the homology
class of its associateéf-cycle. By Lemmdb, this take9(g|E|) total time.

We use the above color-coding schema. We thus have to tegefeom the node(s, (), 0) and
test the conditions of Lemniall4. Exploriftgfrom a node(u, ¢, h) takesO(k + ¢) time per incident
outgoing arc. Indeed, for an edgewith endpointsu andv we have to check that(v) ¢ ¢ and
compute the homology clagsb[7 (T, e)]. TraversingH from (s, 0, 0) thus takes overad(3_,, . ,(k+
g)d(u)) = 200 . 20(k) .| | time.

Note that, for any traversed node, c, 1), the concatenation of the arc labels on its search path
is ac-colored pattp in G such thatp - T'(u, s)] = h. This allows to backtrack a separating cycle of
length|c| in case of success of the previous test. O

Thehomology cover used by Erickson and Nayyeri in [EN11] leads to an altereativthe above
construction ofH. Indeed,G has a separating cycle throughf and only if the homology covefy
of S has a cycle through a lift of that projects to a cycle itr. The lift Gy of G in the cover has
20(9)|E| edges. Therefore, a simple application of the color-codipgroach of Alon et al. @y
would lead to an algorithm of complexigf’(¥)20(9) | E| (see [ENTL, Sec. 3]).

6.2 Splitting cycle

Our method to search for a splitting cycle through a giveriexes uses basically the same coloring
schema as for a separating cycle. This time, however, wenalsd to check that the separating cycle
is non-contractible. For this, we consider the graphwith nodes of the typdu, ¢, h,«), where
ueV,cC{l,...,k}andh € H,(S) as before and: is a homotopy class in; (S, s). Two nodes
(u,c, h,a) and(v, ¢, g, 3) are linked by an arc labelled with edgéf the four conditions below hold.

C1. the endpoints of areu andwv,

C2. k(v) € candd = cU k(v),
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C3.g=h&|[r(T,e)], and

C4. 3=« (1(T,s,e)), where(r(T, s, e)) is the homotopy class of tHE-loop 7(T, s, e) oriented
so as to traverse from u to v.

We then have the following analog of Lemind 14.

Lemma16. Let / beaninteger, 1 < ¢ < k. Thereisa splitting colorful cycle in G through s and of
length ¢ if and only if there is a directed path of length ¢ in H' from (s,,0,1) to a node (s, ¢, 0, «)
for somec C {1, ..., k} and some non-trivial homotopy class «.. (Here, 1 denotes the homotopy class
of the constant loop.)

As opposed to homology classes there are usually an infioitgorr of homotopy classes. As a
consequence, we cannot just travetteas we did withH for separating cycles. We circumvent this
difficulty with the following simple observation. Supposet there are two colorful paths frosto
u that use the same subset of colors, are homologous, but afmmtopic. If there is a colorful
separating cycle that extends one of these paths, thenishas® a splitting cycle that extends one of
them. Indeed, replacing in any cycle one path by the othes doechange the homology class, but
does change the homotopy class. This leads to the followgayithm.

We partially traverseH’ from (s, 0,0, 1). To exploreH’ from a node(u, ¢, h, ) we inspect every
edgee incident tou and create a new node, ¢, g, 3) if the four above conditions C1-C4 are verified
and if at most one other node, ¢/, g, \) was already created for some#£ 3. This last condition can
be checked using a counting table with one entry per tripihefform (v, ¢, g). We use an implicit
trivial encoding of the homotopy class: the homotopy clédss the node(v, ¢, g, 3) is represented
by the sequence of arc labels on the traversal path frofh 0, 1) to (v, ¢, g, 5). This indeed gives a
pathp in G such that? = (p - T'(v, s)). The pathp can be backtracked when neededi(k) time. In
order to perform the homotopy test between two clagsaad A represented by the two pathsand
q respectively, we can test if the logp ¢~ is contractible using the contractibility test of Dey and
Guha [DG99] inO(k) time (afterO(|E|) time preprocessing). It follows that the cost for travegsin
an arc ofH’ and visiting a new node or performing the test of Lenimia 16 isded byO(g + k).

Lemma 17. Given a k-coloring of GG, the above algorithm decides if G has a colorful splitting cycle
through s of length at most & and report one, if one exists, in 209 +5) | E| time.

Proof. The partial traversal of{’ in the algorithm visits a subgraph” that is at most twice as big as
H. The fact that we can replaée’ by H” in LemmadIb follows from the above observation. The rest
of the analysis is identical to the separating case as in Laifin O

6.3 Proof of Theorem

Suppose has a separating or a splitting cyeleof length at mosk. Sincey may be colorful with
probability at lease~©(*¥), the average number of independent randenolorings we have to draw
before~ is colorful with probability2/3 is 2°%), LemmadIb anf17 thus lead to algorithms with
20(9““)\}3] expected running time for finding. This provides a Monte Carlo linear time algorithm,
with fixed parameters andg, to decide if G contains such a cycle.

In their color-coding papel [AYZ95], Alon et al. also shovattihey can compute a family of size
20(k) 1og |V| of k-colorings with the property that every subsekofertices is colorful for at least one
of these colorings. In conjunction with the lemmas, thigdily gives deterministic algorithms adding
an extralog |V'| factor to the complexity. O
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7 Concluding remarks

Surfaces with boundary. We briefly indicate how to extend our linear-time algorithtosurfaces
with boundary. So le§ be a surface with boundary, and &tbe a graph cellularly embedded on it.
We extendS andG to a surfaceS and a graplt;’ such that; has a contractible cycle anif and only

if G has a contractible cycle a®, and similarly for the other topological types.

e For the separating and non-separating cases, we can psh attdisk to each boundary, since
this does not change whether a closed walk is separatingtor no

e For the contractible case, we attach a handle to every boyrdanponent, and add two loop
edges per handle to make the graph cellular. Every cyclgyasinop edge is non-contractible,
and every other cycle i is contractible inS if and only if it is contractible inS.

e For the non-contractible case, the only interesting casehisn we require the cycle to pass
through a given vertex. We again attach a handle to every boundary component;nétch
handle, we put a new vertex connect it to a vertex ofs, and add two loop edges basedvat
to transform the face of that handle into a disk. Sincg s, no cycle throughs uses the new
edges, so there is a cycle througin G that is non-contractible o8 if and only if there is a
cycle throughs in G that is non-contractible oS.

o Forthe splitting case, we consider a cycle to be splittirigsiéparates into two non-zero genus
subsurfaces, possibly with boundary. We can proceed a®isdparating case by attaching a
disk to each boundary. This does not change the propertyinf lseparating and preserves
the genus of subsurfaces. Note that a splitting cycl& imust cutS into non-zero genus
subsurfaces.

Shortest closed walks.  WhenG contains a separating, respectively splitting, cycle, arr@mpute
a shortest cycle of the corresponding typ@i9+9|E||V | log |V | time, wheref is the length of this
shortest cycle. For this we can apply CorollBty 4 with= 1,2, 3, ... until the algorithm reports the
existence of a cycle, which obviously happensKace ¢. The total cost is

VA
> 20WR B[V [log [V| = 2099 E[|V] log |V/].
k=1

Chambers et al [CCdVEDE] present an algorithm with complexig9)|E|log [V| for comput-

ing a shortest splittinglosed walk on G. This shortest closed walk may have repeated vertices
(in [CCdVET08] this closed walk is called a cycle as it can be perturbed timpological cycle).
This will be the case, for instance,G hasno splitting cycle. The problem tackled by Chambers et al.
is thus different from the problem treated here. This diffee suggests the following more general
guestion: Given a closed walk i@, decide if there is a cycle it¥ of the same topological type, say
in the same homotopy or homology class, and report one ifist&@xChambers et al. were also able
to compute a shortest splitting closed walk that cuts th&asarinto two subsurfaces with prescribed
topology [CCdVE 08, Sec. 6], i.e. fixing there genera and number of boundanponents. It is not
clear whether our present color coding approach can bededeto handle this case.
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