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The following notes provides some basic definitions and properties of splines in view
of interpolation and approximation purposes. They are partly inspired by the book of
J.-J. Risler [Ris92]. Other popular references include Farin [Far02] and Gallier [Gal00].

1 Spline functions and curves

Originally, splines where used in the manufacturing industry to design smooth curves
with some energy minimizing property. Those were thin wooden strips (called ”splines”)
through points laid out on the floor. They were actually used for designing ships, auto-
mobiles or aircraft. Their use goes back as early as the 1600s.

1



An Introduction to Splines 2

-15

-10

-5

0

5

10

15

-2 0 2 4 6 8 10 12 14 16
-15

-10

-5

0

5

10

15

-2 0 2 4 6 8 10 12 14 16

Figure 1: The Lagrange interpolating polynomial is highly sensible to the data point
positions. Left, the Lagrange polynomial for horizontally aligned points. Right, the
Lagrange polynomial for the slightly perturbed points.

Let t0 < t1 < . . . < tn be a set of (real) parameters and let y0, y1, . . . , yn be a set of
(real) values. Suppose we want an explicit smooth function f interpolating the (ti, yi),
i.e., such that f(ti) = yi for 0 ≤ i ≤ n.

The simplest is to consider a polynomial function. In particular, we can use the
Lagrange interpolating polynomial (1795). It is defined as

`(t) =
n∑
i=0

yi

(
n∏

j=0,j 6=i

t− tj
ti − tj

)

One immediately checks that `(ti) = yi for 0 ≤ i ≤ n. This polynomial is the unique inter-
polating polynomial with degree at most n. Indeed, let f be an interpolating polynomial
of degree at most n. Then `−f has degree at most n and cancels at the n+ 1 parameters
ti. By d’Alembert fundamental Theorem of Algebra, ` = f . The Lagrange interpolating
polynomial is not always the prefered solution as some undesired oscillation effects, known
as Runge’s phenomenon, may appear. See Figure 1. One solution to cope with this
phenomenon is to use higher degree polynomials with more control coefficients. However,
manipulating high degree polynomials is computationally demanding and also subject to
accuracy problems. Another prefered solution is to use a piecewise polynomial function
of lower degree as described in the next section.

Exercise 1 Suppose that instead of prescribing the values of a function f at t0, . . . , tn,
we impose the derivatives of f at t0 up to order n. Can you find a degree n polynomial
with the same derivatives? (Hint: you may use Taylor’s theorem.)

1.1 Cubic splines

Put T = (t0, t1, . . . , tn) and let S3,T be the set of C2 piecewise polynomial functions over
[t0, tn] whose restriction to each interval [ti, ti+1) is a degree 3 polynomial1. This is a
vector space (we can take linear combinations of such functions) with dimS3,T = n + 3.
To see this, note that each of the n polynomial pieces requires 4 coefficients and each of

1More generally, we denote by Sk,T the set of piecewise polynomials of degree k with continuity Ck−1

at the parameters ti.
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the n − 1 connections between them imposes 3 linear constraints, all independent. This
leads to 4n− 3(n− 1) = n+ 3 degrees of freedom.

For a function f : R → R, let f+(t) = max(f(t), 0). A basis of S3,T is given by the
following set of n+ 3 functions:

S = { (t− t0)k }0≤k≤3 ∪ { (t− ti)3+ }1≤i≤n−1

Indeed, those are easily seen to be independent functions in S3,T .

Lemma 1 (Interpolating property) Given real numbers α, β and y0, y1, . . . , yn there
exists a unique f ∈ S3,T such that (1) : f(ti) = yi for 0 ≤ i ≤ n and (2) : f ′(t0) = α and
f ′(tn) = β. In other words, f interpolates the yi and its initial and final slopes are given
by α and β respectively.

Proof. Intuitively, conditions (1) and (2) define n + 3 linear (affine) independent
constraints on the coefficients of the polynomials. This is precisely the dimension of S3,T .

When n = 1 and T = (0, 1), the set S3,T is just the set of cubic polynomials over
[0, 1]. The interpolating property then states that there exists a unique cubic polynomials
whose values and derivatives are fixed at 0 and 1. In this case dimS3,T = 4 and there is
a convenient basis formed by the Hermite polynomials:

h00(t) := (1 + 2t)(1− t)2, h01(t) := t2(3− 2t), h10(t) := t(1− t)2, h11(t) := t2(t− 1)

The unique spline f ∈ S3,T defined by f(0) = y0, f(1) = y1, f
′(0) = α and f ′(1) = β is

given by
f = y0h00 + y1h01 + αh10 + βh11

This is an easy consequence of the following table 1. The functions in S3,T are called

func F F (0) F (1) F ′(0) F ′(1)

h00 1 0 0 0
h01 0 1 0 0
h10 0 0 1 0
h11 0 0 0 1

Table 1: The values of the Hermite basis functions and their derivatives at the parameters
t = 0 and t = 1.

splines in reference to the energy minimizing property of the original wood splines. In-
deed, let α, β and y0, y1, . . . , yn be real numbers and let E be the set of C2 functions φ
over [t0, tn] such that φ(ti) = yi for 0 ≤ i ≤ n and φ′(t0) = α and φ′(tn) = β. We have
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Lemma 2 (Energy minimizing property) Among all φ ∈ E there exists a unique
function f that minimizes

∫ tn
t0

(φ′′)2. Moreover, f ∈ S3,T .

Proof. From the interpolating property lemma there is a unique f ∈ E ∩ S3,T . We
first claim that for any φ ∈ E and any continuous piecewise linear function h with corners
at the ti, we have

∫ tn
t0

(φ−f)′′h = 0. Indeed, using integration by parts and cutting [t0, tn]
into the intervals [ti, ti+1], we obtain:∫ tn

t0

(φ− f)′′h = [(φ− f)′h]tnt0 −
n−1∑
i=0

∫ ti+1

ti

(φ− f)′h′

From φ′(t0) = f ′(t0) = α and φ′(tn) = f ′(tn) = β we conclude that [(φ − f)′h]tnt0 = 0.

Because h′ is a constant over each [ti, ti+1], we also have
∫ ti+1

ti
(φ− f)′h′ = [(φ− f)h′]

ti+1

ti

which is also zero as φ(ti) = f(ti).
We can know write∫ tn

t0

(φ′′)2 =

∫ tn

t0

((φ− f)′′ + f ′′)2 =

∫ tn

t0

((φ− f)′′)2 +

∫ tn

t0

(f ′′)2 + 2

∫ tn

t0

(φ− f)′′f ′′

But the last integral cancels out by the above claim. It follows that
∫ tn
t0

(φ′′)2 is minimal
if and only if the continuous function (φ − f)′′ is zero everywhere. We infer that φ = f
because these two functions have the same value and derivative at t0.

1.2 B-splines

From the interpolation property we know that given a set of n + 1 values and given an
initial and final slope, there exists a unique interpolating spline in S3,T . This spline is
a linear combination of the S basis elements whose coefficients can be found by solving
a set of linear equations. The exact formula for those coefficients is not simple, though.
It would be nice to have another basis of S3,T whose linear combinations are somehow
related to the interpolation property. Ideally, if {bi}0≤i≤n+2 is such a basis, we would
hope that f(t) =

∑
i yibi(t) satisfies f(ti) = yi (omitting the extremal slope conditions).

This would imply bi(tj) = δij, where the usual Kronecker symbol δij is zero whenever
i 6= j and δii = 1. A natural choice would be to take bi with a bell shape and support in
[ti−1, ti+1]. In particular, taking into account the C2 continuity, we should have bi(ti) = 1
and b′i(ti) = bi(ti+1) = b′i(ti+1) = b′′i (ti+1) = 0. However, there is no degree 3 polynomial
satisfying those conditions on the interval [ti, ti+1]. Hence, our ideal and natural conditions
can not be fulfilled. Defining a convenient spline basis appears to be a non trivial task.

A common basis, often used in CAD systems, is given by the so called B-splines.
Those basis functions have nice geometric properties even though the coefficients of a
spline in the B-spline basis are not exactly given by its values at the tis. The B-splines are
recursively defined as follows. We first introduce six extra parameters2 t−3, t−2, t−1 and

2The parameters ti are also called knots. In the general definition of B-splines, we only require
ti ≤ ti+1, rather than ti < ti+1, for −3 ≤ i < n+ 3. Having a knot ti repeated r times allows to decrease
the degree of continuity at ti to Ck−r. See [Ris92].
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Figure 2: Right,the six degree 1 B-splines corresponding to the parameters
(0,1,3,4,7,8,9,10). Middle, the five degree 2 B-splines corresponding to the same pa-
rameters. Right, the corresponding four degree 3 B-splines.

tn+1, tn+2, tn+3 in addition to T satisfying t−3 < t−2 < t−1 < t0 and tn < tn+1 < tn+2 <
tn+3. Let ωi,k be the unique affine function with ωi,k(ti) = 0 and ωi,k(ti+k) = 1. In other
words3,

ωi,k(t) =
t− ti
ti+k − ti

Let Bi,0 be the indicator function of the interval [ti, ti+1). Hence, Bi,0(t) = 1 over [ti, ti+1)
and 0 elsewhere. For k = 1, 2, 3 and −k ≤ i ≤ n− 1, we set

Bi,k = ωi,kBi,k−1 + (1− ωi+1,k)Bi+1,k−1 (1)

By convention we also set Bi,k = 0 for i < −k or i > n − 1. A simple recursion on k
shows that

Proposition 3 Bi,k ∈ Sk,T is non-negative with support [ti, ti+k+1). Moreover the Bi,k,
for −k ≤ i ≤ n − 1, add up to one over [t0, tn). In particular, the Bi,k constitute a
partition of unity over [t0, tn).

In most cases, the B-splines are continuous over R and we can extend the partition
of unity over the closed interval [t0, tn]. Figure 2 shows the B-spline bases of degree 1,2
and 3 with respect to a same sequence of parameters. Figure 3 illustrates the fact that
the sum of the B-splines of a fixed degree is one over a sub-interval. Beware that the
definition of Bi,k relies on the parameters {ti}−3≤i≤n+3 even though we only consider its
restriction to [t0, tn). In order to prove that {Bi,3}−3≤i≤n−1 is indeed a basis of S3,T we
need the following

Lemma 4 for 0 ≤ k ≤ 3 and t ∈ [t0, tn):

(x− t)k =
n−1∑
i=−k

ci,k(t)Bi,k(x) with ci,k(t) = (ti+1 − t) · · · (ti+k − t)

3We set ωi,k = 0 whenever ti = ti+k.
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Figure 3: The same degree 3 B-splines as on Figure 2 together with their sum. Here, we
have t−3 = 0, t−2 = 1,t−1 = 3, t0 = 4, t1 = 7, t2 = 8, t3 = 9, t4 = 10. The sum of the
B-spline functions is one over [t0, t1].

Proof. This is true by definition for k = 0 (in this case ci,k is the unit constant
function). Assume the lemma true up to degree k − 1 ≥ 0. Then, from the recursive
definition of Bi,k we have

n−1∑
i=−k

ci,k(t)Bi,k(x) =
n−1∑
i=−k

ci,k(t)(ωi,k(x)Bi,k−1(x) + (1− ωi+1,k(x))Bi+1,k−1(x))

= c−k,k(t)ω−k,k(x)B−k,k−1(x) + cn−1,k(t)(1− ωn,k(x))Bn,k−1(x) +
n−1∑
i=1−k

(
ci,k(t)ωi,k(x) + ci−1,k(t)(1− ωi,k(x))

)
Bi,k−1(x) (E)

In this last right member (E), the first two terms are null since from our convention:
B−k,k−1 = Bn,k−1 = 0. We also have

ci,k(t)ωi,k(x) + ci−1,k(t)(1− ωi,k(x)) =

ci,k−1(t)(ti+k − t)ωi,k(x) + ci,k−1(t)(ti − t)(1− ωi,k(x)) =

ci,k−1(t)

(
(ti+k − t)

x− ti
ti+k − ti

+ (ti − t)
ti+k − x
ti+k − ti

)
= ci,k−1(t) · (x− t)

It follows that the last sum in (E) reduces to
∑n−1

i=1−k(x− t)ci,k−1Bi,k−1 which is (x− t)k
by our recursion assumption.

Proposition 5 B = {Bi,3}−3≤i≤n−1 is a basis of S3,T .

Proof. Since B has n+ 3 = dimS3,T elements it suffices to prove that B spans S3,T ,
or equivalently that every element in the basis S is a linear combination of elements in
B. By the preceding lemma, applied with k = 3 and t = t0, this is true for the S basis
element (x− t0)3. Differentiating (x− t)3 three times with respect to t and using the same
formula in the lemma we deduce that (x − t0)k is also spanned by B for k = 0, 1, 2. We
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Figure 4: The graph of the function f(t) = sin(t/2) + cos(t) (dotted curve) approximated
by the (red) spline

∑8
i=−3 f(t∗i )Bi,3(t) with ti = i, −3 ≤ i ≤ 12. Here, t∗i = i + 2 for

−3 ≤ i ≤ 8. The approximation is provably good over the interval [t0, tn) = [0, 9].

finally claim that, for 1 ≤ j ≤ n− 1

(x− tj)3+ =
n−1∑
i=j

ci,k(tj)Bi,k(x)

Indeed, for x < tj and i ≥ j, Proposition 3 tells that Bi,k(x) = 0. It follows that both
members are zero in the above equality. For x ≥ tj, this equality is just the same as in
the lemma with k = 3 and t = tj, noting that the missing terms in the sum are indeed
null (either ci,k(tj) or Bi,k(x) is null).

Although the B-spline basis does not provide a simple formula for the coefficients of
an interpolating spline, they have a nice behaviour with respect to approximation. Given
any (not necessarily polynomial) C2 function f : [t−2, tn+2]→ R we put

Sf(t) =
n−1∑
i=−3

f(t∗i )Bi,3(t), where t∗i =
1

3
(ti+1 + ti+2 + ti+3) (2)

Figure 4 shows an approximation of the function f(t) = sin(t/2) + cos(t) over the interval
[0, 9] by the function Sf . If h = max0≤i≤n−1(ti+1 − ti) is the maximal step size of T , and
‖f‖I = supt∈I |f(t)| is the C0-norm of f over the interval I, we have

Theorem 6

‖f − Sf‖[t0,tn) ≤
9

2
h2‖f ′′‖[t−2,tn+2)

Proof. Let t ∈ [ti, ti+1) with 0 ≤ i ≤ n− 1. We want to prove that |f(t)− Sf(t)| ≤
9
2
h2‖f ′′‖I , with I = [t−2, tn+2). Consider the tangent line ϕ of f at t. Its equation is given

by
ϕ(x) = f(t) + f ′(t)(x− t)
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It is not hard to show that for the linear function ϕ we have Sϕ = ϕ (see next exercise).
In particular, Sϕ(t) = ϕ(t) = f(t). We thus have

f(t)− Sf(t) = Sϕ(t)− Sf(t) =
i∑

j=i−k

(ϕ(t∗j)− f(t∗j))Bj,3(t)

The range of indices in the last summation is due to Bj,3(t) = 0 for j > i or j < i − k,
since we assumed t ∈ [ti, ti+1). By Taylor formula,

f(t∗j) = f(t) + f ′(t)(t∗j − t) +
f ′′(ξ)

2!
(t∗j − t)2 = ϕ(t∗j) +

f ′′(ξ)

2!
(t∗j − t)2 for some t∗j < ξ < t

Whence,

|ϕ(t∗j)− f(t∗j)| ≤ |
f ′′(ξj)

2!
(t∗j − t)2| ≤

‖f ′′‖I
2!

(t∗j − t)2

Note that for −3 ≤ j ≤ n − 1, the inequalities t−2 ≤ tj+1 ≤ t∗j ≤ tj+3 ≤ tn+2 implies
ξj ∈ I. Since tj+1 ≤ t∗j ≤ tj+3 and ti ≤ t < ti+1, we have for i− 3 ≤ j ≤ i:

|t∗j − t| ≤ max(|t∗i−3 − ti+1|, |t∗i − ti|) ≤ max(|ti−2 − ti+1|, |ti+3 − ti|) ≤ 3h.

We conclude that |ϕ(t∗j)− f(t∗j)| ≤
‖f ′′‖I
2!

9h2, and finally

|f(t)− Sf(t)| ≤
i∑

j=1−k

(
‖f ′′‖I

2!
9h2)Bj,3(t) ≤

9

2
‖f ′′‖Ih2

i∑
j=1−k

Bj,3(t) ≤
9

2
‖f ′′‖Ih2.

where the last inequality results from
∑i

j=1−k Bj,3(t) ≤
∑n−1

j=−3Bj,3(t) = 1

Exercise 2 Show that the approximation formula (2) reproduces affine functions. In
other words, show that S(at+ b) = at+ b.

1.3 Spline curves

A spline curve γ : [t0, tn)→ R2 in the plane is a parametrized curve whose coordinates
are spline functions. Writing γ(t) = (x(t), y(t)) we thus have x(t) =

∑n−1
i=−3 xiBi,3(t)

and y(t) =
∑n−1

i=−3 yiBi,3(t). Putting pi = (xi, yi) we can write γ(t) =
∑n−1

i=−3 piBi,3(t).
The polyline p−3, p−2, . . . pn−1 is called the control polygon of the spline curve γ with
respect to the B-spline basis B = {Bi,3}−3≤i≤n−1. Note that the curve γ is defined over
the interval [t0, tn), although the definition of the B-spline basis uses the parameters
(t−3, t−2, . . . , tn+3). Indeed, the combination of points pi in the sum

∑n−1
i=−3 piBi,3(t) is

only meaningful when
∑n−1

i=−3Bi,3(t) = 1, which is insured over [t0, tn) by the partition of
unity property in Proposition 3.

Exercise 3 Let P = (p−3, p−2, . . . pn−1) be the control polygon of a spline curve f :
[t0, tn) → R2, i.e., f =

∑n−1
i=−3 piBi,3(t). A convex combination of the control points

in P is any affine combination
∑n−1

i=−3wipi where wi ≥ 0 and
∑n

i=1wi = 1. The convex
hull of P is the set of its convex combinations.
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• Show that the curve traced by f for t ∈ [t0, tn) is contained in the convex hull of P .

• Show more precisely that for any t ∈ [ti, ti+1), 0 ≤ i ≤ n− 1, the point f(t) is in the
convex hull of {pi−3, pi−2, pi−1, pi}.

(Hint: you may use Proposition 3.)
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Figure 5: Example of degree 3 spline curves. The control polygon is shown in red. Each
spline segment, i.e., the restrictions of the spline curve to the intervals [ti, ti+1), 0 ≤ i ≤
n− 1, is shown with a distinct color. Here n = 3. The figure emphasizes the influence of
the choice of the parameters ti. The sequence of parameters is (0, 1, 2, 3, 5, 5.5, 8, 9, 11, 12)
for the upper left figure and (.1, .2, .3, .4, 1, 4, 5, 6, 6.5, 7) for the upper right figure. The
lower figures show the corresponding B-spline bases (the B-spline colors are not related
to the upper spline curve colors).

De Boor-Cox algorithm. There is a nice geometric construction that allows to draw
a point of a spline from its control polygon using a ruler. The construction is due to De
Boor-Cox for spline curves defined with B-splines and by De Casteljau when Bernstein
polynomials are used in place of B-splines (see Section 1.4).

Proposition 7 Let t ∈ [tj, tj+1) with 0 ≤ j ≤ n− 1 and let γ =
∑n−1

i=−3 piBi,3 be a cubic
spline curve. We can write

γ(t) =

j∑
i=j−3

p0iBi,3(t) =

j∑
i=j−2

p1iBi,2(t) =

j∑
i=j−1

p2iBi,1(t) = p3j

where

p0i = pi and pr+1
i = ωi,3−r(t)p

r
i + (1− ωi,3−r(t))pri−1 (3)

and ωi,3−r(t) = t−ti
ti+3−r−ti .
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p30 = γ(1/4)p2−1

p20

p1−2

p1−1

p10

p−3
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p0

Figure 6: A degree 3 spline curve (thick black) defined by the parameters
(−0.3,−0.2,−0.1, 0, 1, 1.1, 1.2, 1.3) and the control polygon (p−3, p−2, p−1, p0). In partic-
ular the curve is defined over the interval [t0, t1) = [0, 1). The construction of γ(1/4) is
highlighted.

Note that pr+1
i actually depends on the parameter t. We dropped the parameter to

emphasize the geometric construction.

Proof. From the recursive formula (1) we can write for k = 1, 2, 3:

j∑
i=j−k

p3−ki Bi,k =

j∑
i=j−k

p3−ki (ωi,kBi,k−1 + (1− ωi+1,k)Bi+1,k−1)

=

j∑
i=j−k

p3−ki ωi,kBi,k−1 +

j+1∑
i=j−k+1

p3−ki−1 (1− ωi,k)Bi,k−1

=

j∑
i=j−k+1

(p3−ki ωi,k + p3−ki−1 (1− ωi,k))Bi,k−1

+ p3−kj−kωj−k,kBj−k,k−1 + p3−kj (1− ωj+1,k)Bj+1,k−1.

By Proposition 3, Bj−k,k−1(t) = Bj+1,k−1(t) = 0 for t ∈ [tj, tj+1). It follows that the last
equality reduces to

j∑
i=j−k

p3−ki Bi,k =

j∑
i=j−k+1

(p3−ki ωi,k + p3−ki−1 (1− ωi,k))Bi,k−1.

Whence, putting r = 3− k, pr+1
i = priωi,3−r + pri−1(1− ωi,3−r).

Equation (3) expresses pr+1
i as a barycenter of pri and pri−1 with respective weights α =

ωi,3−r(t) and 1 − α. In particular, pr+1
i belongs to the segment prip

r
i−1. We also note

that the computation of γ(t) is local in the sens that it only depends on the four points
pj−3, pj−2, pj−1, pj. Figure 6 illustrates the geometric construction of a spline curve point.
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1.4 Bernstein polynomials and Bézier curves

A particular case occurs for the B-spline basis of S3,T when T = (t0, t1), i.e. n = 1 and
t−3, t−2, t−1 tend toward t0 while tn+1, tn+2, tn+3 tend toward t1. If we further take t0 = 0
and t1 = 1, the recursion formula (1) becomes for k = 1, 2, 3 and −k ≤ i ≤ 0,

Bi,k(t) = tBi,k−1(t) + (1− t)Bi+1,k−1(t)

This recursion easily solves to Bi,k(t) =
(
k
i+k

)
ti+k(1 − t)−i. Putting bj,k = Bj−k,k for

0 ≤ j ≤ k, we obtain

bj,k(t) =

(
k

j

)
tj(1− t)k−j (4)

In particular, we have from the binomial expansion theorem

1 = (t+ (1− t))k =
k∑
j=0

bj,k(t) (5)

The bj,k are called the Bernstein polynomials, named after the mathematician Sergei
Natanovich Bernstein (1880–1968). Figure 7 shows the Bernstein bases of respective
degree k = 3 and k = 4. A simple derivation of (4) shows that

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 7: The Bernstein polynomials of degree 3 (left) and 4 (right).

b′j,k = k(bj−1,k−1 − bj,k−1) (6)

It is intended that bj,k ≡ 0 whenever j < 0 or j > k.

Exercise 4 Prove equations (4) and (6).

Exercise 5 Find the coefficients of the identity function in the Berstein Basis. In other
words find c0, c1, c2, c3 such that t =

∑3
j=0 cjbj,3(t). (Hint: you may use Exercise 2.)

A Bézier curve

γ(t) =
3∑
j=0

pjbj,3(t)
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p0

p1

p2

p3

Figure 8: A degree 3 Bézier curve.

is a spline curve defined with Bernstein polynomials. Since bj,k(0) = δ0,j and bj,k(1) = δk,j,
we have γ(0) = p0 and γ(1) = p3. Using the above derivation formula (6), we obtain

γ′(t) = 3
3∑
j=0

pj(bj−1,2(t)− bj,k2(t)) = 3
2∑
j=0

(pj+1 − pj)bj,2

In particular, γ′(t) = 3(p1 − p0) and γ′(1) = 3(p3 − p2). It follows that the first and last
segment of the control polygon (p0, p1, p2, p3) are tangent to γ at p0 and p3 respectively
(See Figure 8). The De Boor-Cox algorithm simplifies for a Bézier curve and Equation 3
becomes (after shifting the indices by 3):{

p0i = pi, 0 ≤ i ≤ 3
pr+1
i = tpri + (1− t)pri−1, 0 ≤ r ≤ 2, 0 ≤ i ≤ 2− r

This last algorithm is attributed to De Casteljau.

1.5 Knot insertion

Consider the set of splines S3,T , i.e., the set of C2 functions whose restriction to each
interval of the sequence of parameters T = (t0, t1, . . . , tn) is a cubic polynomial. Let
t0 ≤ τ ≤ tn be an extra parameter and put T̂ = T ∪ {τ}. Then, every interval of T̂
is contained in an interval of T . It follows that S3,T ⊂ S3,T̂ . We now consider extra
parameters t−3 < t−2 < t−1 < t0 and tn < tn+1 < tn+2 < tn+3 to define the B-spline bases
B = {Bi,3}−3≤i≤n−1 and B̂ = {B̂i,3}−3≤i≤n of S3,T and S3,T̂ respectively. Note that the

number of B-splines in B̂ is one more than in B. From what we just saw, every spline∑
i ciBi,3 ∈ S3,T can be written

n−1∑
i=−3

ciBi,3 =
n∑

j=−3

ĉjB̂j,3
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for some uniquely defined coefficients ĉj. Extending to the coordinates of a spline curve∑
i piBi,3, we have

n−1∑
i=−3

piBi,3 =
n∑

i=−3

p̂iB̂i,3

for some uniquely defined control points p̂i. The same relation holds not only for degree
3 splines but for any degree k splines. The expression of p̂i in terms of the control points
pi is recorded in the following

Proposition 8 (Boehm’s algorithm) Every spline curve
∑n−1

i=−k piBi,k can be written∑n
i=−k p̂iB̂i,k in the B̂ basis of Sk,T̂ where

p̂i =


pi if ti+k ≤ τ
ωi,k(τ)pi + (1− ωi,k(τ))pi−1 if ti < τ < ti+k
pi−1 if ti ≥ τ

(7)

If tj < τ < tj+1 for some j ∈ [0, n − 1], the condition ti+k ≤ τ reduces to i ≤ j − k,
while ti < τ < ti+k translates to j − k + 1 ≤ i ≤ j and ti ≥ τ translates to i ≥ j + 1.
However, the formulation in the proposition remains valid even when τ is equal to some
tj (See footnote 2). Figures 9 and 10 illustrate the insertion of new parameters in the
parameter sequence of spline.

Figure 9: Left, a degree 3 spline defined by a control polygon with four vertices. Right,
inserting a parameter adds a control point and splits the spline into two spline segments.

Figure 10: Successive insertions of parameters. The resulting sequence of control polygons
converges toward the corresponding spline.
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Proof. We prove the proposition by induction on the degree k of the splines. Let
us put γ(x) =

∑n−1
i=−k piBi,k(x) Thanks to the recursive definition (1) of B-splines we can

write for t0 < x < tn.

γ(x) =
n−1∑
i=−k

pi(ωi,k(x)Bi,k−1(x) + (1− ωi+1,k(x))Bi+1,k−1(x))

=
n−1∑
i=−k

piωi,k(x)Bi,k−1(x) +
n∑

i=1−k

pi−1(1− ωi,k(x))Bi,k−1(x)

=
n−1∑
i=1−k

(ωi,k(x)pi + (1− ωi,k(x))pi−1)Bi,k−1(x)

The indices in the last summation are justified by B−k,k−1(x) = Bn,k−1(x) = 0. Putting
p1i = ωi,k(x)pi + (1− ωi,k(x))pi−1 we thus have γ(x) =

∑n−1
i=1−k p

1
iBi,k−1(x). Applying the

induction hypothesis at order k − 1, we then write

γ(x) =
n−1∑
i=1−k

(̂p1i )B̂i,k−1(x)

Where (̂p1i ) is given as a function of the p1i according to (7). On the other hand, define

γ̂(x) =
n∑

i=−k

p̂iB̂i,k

with p̂i defined by (7). Thanks to the recursive equation (1) for order k − 1, we obtain
similarly as above

γ̂(x) =
n∑

i=1−k

(p̂i)
1B̂i,k−1(x)

with (p̂i)
1 = ω̂i,k(x)p̂i + (1 − ω̂i,k(x))p̂i−1. Hence, it suffices to show that (̂p1i ) = (p̂i)

1

to conclude, as required for the induction, that γ = γ̂. We first consider i such that
ti < τ < ti+k−1. On the one hand,

(̂p1i ) = ωi,k−1(τ)p1i + (1− ωi,k−1(τ))p1i−1
= ωi,k−1(τ)(ωi,k(x)pi + (1− ωi,k(x))pi−1)

+ (1− ωi,k−1(τ))(ωi−1,k(x)pi−1 + (1− ωi−1,k(x))pi−2)

= ωi,k−1(τ)ωi,k(x)pi +
(
ωi,k−1(τ)(1− ωi,k(x)) + (1− ωi,k−1(τ))ωi−1,k(x)

)
pi−1

+ (1− ωi,k−1(τ))(1− ωi−1,k(x))pi−2

On the other hand, we have

(p̂i)
1 = ω̂i,k(x)p̂i + (1− ω̂i,k(x))p̂i−1

= ω̂i,k(x)(ωi,k(τ)pi + (1− ωi,k(τ))pi−1)

+ (1− ω̂i,k(x))(ωi−1,k(τ)pi−1 + (1− ωi−1,k(τ))pi−2)

= ω̂i,k(x)ωi,k(τ)pi +
(
ω̂i,k(x)(1− ωi,k(τ)) + (1− ω̂i,k(x))ωi−1,k(τ)

)
pi−1

+ (1− ω̂i,k(x))(1− ωi−1,k(τ))pi−2
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Since T̂ has one extra parameter τ with ti < τ < ti+k−1, we have t̂i = ti and t̂i+k = ti+k−1,
whence ω̂i,k = ωi,k−1. We then leave it to the reader to check that f(τ)g(x) = f(x)g(τ)
for (f, g) = (ωi,k−1, ωi,k) or (ωi,k−1, 1−ωi,k) or (1−ωi,k−1, ωi−1,k) or (1−ωi,k−1, 1−ωi−1,k).
It directly follows that γ = γ̂. The other cases when ti ≥ τ or τ ≥ ti+k−1 can be treated
in a similar way.

Exercise 6 Deduce from the proposition how to express the B-splines Bj,k in the B̂ basis.
(Hint: you can write Bj,k =

∑n−1
i=−k ciBi,k with ci = δi,j)

1.6 Bézier curve subdivision

In Section 1.4, we introduced Bézier curves as special cases of splines. We can thus
insert new parameters as for any spline following the previous section. However, after
introducing one parameter the new spline is not expressed anymore as a Bézier curve.
The left Figures 9 actually represents a Bézier curve whose spline basis are Bernstein
polynomials. After inserting a parameter, the right Figures 9 represent the same spline
in a spline basis that is no more composed of Bernstein polynomials. If we introduce
3 identical parameters (respectively k for a degree k Bézier curve) at the same place
then it can be shown that the control polygon has 7 (respectively 2k + 1) control points
whose median point lies on the spline curve. To see this, observe that the knot insertion
procedure described in Proposition 8 is exactly the same as the first step of the De
Boor-Cox construction described in Proposition 7. Indeed this first step can be written
γ(t) =

∑n−1
i=−3 piBi,3(t) =

∑n
i=−2 p

1
iBi,2(t) Inserting the parameter τ three times thus

amounts to compute γ(τ) as a new control point. In fact, inserting τ one more time will
double this control point (to see this, you can just apply (7) as in Proposition 8). Starting
with a Bézier curve γ(t) =

∑3
i=0 pibi,3(t) =

∑0
i=−3 pi+3Bi,3(t) corresponding to the knot

sequence T = (0, 0, 0, 0, 1, 1, 1, 1), we can thus write after inserting τ four times

γ(t) =
4∑

i=−3

qiB̃i,3(t) =
0∑

i=−3

qiB̃i,3(t) +
4∑
i=1

qiB̃i,3(t)

where {B̃i,3}−3≤i≤4 is the B-spline basis for the knot sequence T̃ = (0, 0, 0, 0, τ, τ, τ, τ, 1, 1, 1, 1)
and q3 = q4. For t ∈ [0, τ), the partial sum

∑0
i=−3 qiB̃i,3(t) only depends on the knot se-

quence (0, 0, 0, 0, τ, τ, τ, τ) and we can write

γ(t) =
0∑

i=−3

qiBi,3(τt)

where the Bi,3 corresponds to T , i.e. are Bernstein polynomials. Likewise, for t ∈ [τ, 1),we
can write the partial sum

∑4
i=1 qiB̃i,3(t) as

γ(t) =
4∑
i=1

qiBi−4,3(
t− τ
1− τ

)

It follows that the Bézier curve γ has been split, after re-parametrization, into two Bézier
curves with control polygons (q−3, q−2, q−1, q0) and (q1, q2, q3, q4). See Figures 11 and 12
for an illustration.
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Figure 11: Left, the same spline has on left Figure 9. It is actually defined as degree 3
Bézier curve. Right, inserting a parameter 3 times at the same position adds 3 control
points and the spline can be split into 2 Bézier curves by doubling the fourth control
point.

Figure 12: Successive splits. The resulting sequence of control polygons converges toward
the corresponding spline.

2 Spline surfaces

2.1 Tensor product surfaces

Once we have defined one dimensional spline functions, a natural generalisation to two
dimension is to consider products of such functions. Hence, if f and g are one dimensional
functions defined over the respective intervals If and Ig, we naturally have a function
f ⊗ g : If × Ig → R defined by f ⊗ g(u, v) = f(u)g(v). Given two spaces of splines S3,T
and S3,T ′ the set of functions we obtain by taking linear combinations of products f ⊗ g,
f ∈ S3,T and g ∈ S3,T ′ , can be identified with the tensor product of spaces S3,T ⊗S3,T ′ .
If B is a basis of S3,T and B′ is a basis of S3,T ′ , the set of functions {b ⊗ b′}b∈S3,T ,b′∈S3,T ′
is a basis of S3,T ⊗ S3,T ′ . Considering the Bernstein basis polynomials (see Section 1.4),
we obtain the tensor product Bézier splines :

f(u, v) =
3∑
i=0

3∑
j=0

cijbi,3(u)bj,3(v)

where cij ∈ R are the control coefficients. Figure 13 shows the graph of some of
the tensor product basis splines b3,3i,j (u, v) = bi,3(u)bj,3(v). A simple summation, using
Equation (5) shows that ∑

0≤i,j≤3

b3,3i,j =
3∑
i=0

3∑
j=0

bi,3bj,3 = 1
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b3,30,0 b3,30,1 b3,30,2

u

v

b3,32,1 b3,33,1 b3,33,3

Figure 13: Not all of the 16 basis splines are represented. Note the simple symmetry
between b3,30,0 and b3,33,3 or between b3,30,2 and b3,33,1. In fact any of the basis splines is symmetric

to one of b3,30,0, b
3,3
0,1 or b3,32,1.

over the domain [0, 1]× [0, 1]. We can thus take convex combinations of control points
pi,j ∈ R3 with coefficients b3,3i,j to define a tensor product Bézier patch

P (u, v) =
3∑
i=0

3∑
j=0

pijbi,3(u)bj,3(v)

The 16 control points of a Bézier patch of degree (3, 3) form a control net obtained
by connecting the control points into a quadrangular grid as on Figure 14. Writing
pj(u) =

∑3
i=0 pijbi,3(u) we see that

P (u, v) =
3∑
j=0

pj(u)bj,3(v)

In other words, for a fixed u, the curve v 7→ P (u, v) is a Bézier curve with control points
pj(u). This simple observation allows to compute P (u, v) by applying the De Casteljau
algorithm five times: four times to compute p0(u), p1(u), p2(u), p3(u) and one more time
to compute P (u, v).
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p0,0

p0,1

p0,2

p0,3

p1,0

p1,3

p3,1

p2,1 p2,2

p3,2

p3,0

p2,0

Figure 14: Two control nets with their rendered Bézier patch.

2.2 Hermite Patches

Using the Hermite basis functions (see Section 1.1) in place of the Bernstein polynomials
we obtain a Hermite patch. Putting H2i+j = hij, i.e., H0 = h00, H1 = h01, H2 = h10
and H3 = h11 this leads to the form:

P (u, v) =
3∑
i=0

3∑
j=0

qijHi(u)Hj(v)

for qij ∈ R3. With the help of Table 1 we easily compute:

qij =



P (i, j), 0 ≤ i, j ≤ 1

∂P

∂u
(i− 2, j), 2 ≤ i ≤ 3, 0 ≤ j ≤ 1

∂P

∂v
(i, j − 2), 0 ≤ i ≤ 1, 2 ≤ j ≤ 3

∂2P

∂u ∂v
(i− 2, j − 2), 2 ≤ i, j ≤ 3

This simple relationship between the control points and the surface patch allows to easily
approximate a given parametrized surface M : [a, b] × [c, d] → R3 by a set of Hermite
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patches. To do so, subdivide the parameter domain [a, b] × [c, d] into smaller rectangles
[ai, bi]× [cj, dj] and estimate each surface piece M([ai, bi]× [cj, dj]) by a Hermite patch de-
fined by the piece corners M(ai, cj), M(bi, cj), M(bi, dj), M(ai, dj) and by the (estimated)

derivatives ∂M
∂u
, ∂M
∂v
, ∂

2M
∂u∂v

at those corners. The resulting union of Hermite patches will
have continuous first order derivatives and continuous crossed derivative. It is a C1 surface,
though not C2 in general. Figure 15 illustrates this approximation for a torus of revolu-
tion. Assuming that the torus is parametrized over [0, 1]× [0, 1], the parameter domain is
divided into 16 pieces corresponding to the subdomains [i/4, (i+ 1)/4]× [j/4, (j + 1)/4],
0 ≤ i, j ≤ 3.

Figure 15: Left, a standard torus of revolution. Middle, a polyhedral approximation whose
vertices are sampled on the standard torus. Right, each face is replaced by a Hermite
patch with the same vertices using exact derivatives as computed on the standard torus.

2.3 Triangular Bézier patches

Tensor product surfaces have a quadrangular domain. If one wants to cover a surface
with tensor product surfaces, the surface must be quadrangulated first as illustrated
on Figure 16. It is sometimes more convenient to work with triangular patches as on

Figure 16: A quadrangulated teapot.

Figure 17. Those are parametrized surfaces defined over the standard triangle ∆ =
{(r, s, t) | r + s + t = 1 and r, s, t ≥ 0} with polynomial coordinates. Given a net of
control points {Pi,j,k}i+j+k=3, the corresponding triangular patch of degree 3 is given by

S(r, s, t) =
∑

i+j+k=3

Pi,j,kbi,j,k(r, s, t)
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where bi+j+k is the Bernstein polynomial (with 3 variables)

bi,j,k(r, s, t) =
3!

i!j!k!
risjtk

By the multinomial theorem, we have

1 = (r + s+ t)3 =
∑

i+j+k=3

bi,j,k(r, s, t)

As for spline curves and tensor product surfaces, it follows that a triangular patch is
included in the convex hull of its control points.

Figure 17: Two views of a triangular Bézier patch of degree 3 with its control net.

3 Splines and Polar Forms

In Section 1.2, B-splines were presented as a basis for S3,T and defined by the recur-
sive formula(1). All subsequent properties of B-splines where deduced from this formula.
There is a more algebraically inclined way of introducing B-splines. The De Boor eval-
uation algorithm or the insertion algorithm are almost straightforward in this approach.
On the other hand the presentation is a little more abstract. It relies on a classical re-
lation between homogeneous polynomials and symmetric multilinear forms. An excellent
introduction is provided by Seidel [Sei93].

3.1 Polar Forms

A map f : Rn → R is multilinear if it is linear in each argument, holding the other ones
fixed, i.e. if f(x1, . . . ,

∑
i λiyi, . . . , xn) =

∑
i λif(x1, . . . , yi, . . . , xn). Likewise, a map is

multiaffine if it is affine in each argument, holding the other ones fixed. Recall that a
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map is affine if it preserves affine combinations4. Hence, g : Rn → R is multiaffine if

g(x1, . . . ,
∑
i

αiyi, . . . , xn) =
∑
i

αig(x1, . . . , yi, . . . , xn) (8)

whenever
∑

i αi = 1. A map h : Rn → R is symmetric if its value does not change when
permuting its arguments, i.e., for any permutation σ ∈ Sn

h(xσ(1), xσ(2), . . . , xσ(n))) = h(x1, x2, . . . , xn)

To every monomial xn we can associate the n-linear symmetric map pn : Rn → R,
(x1, . . . , xn) 7→

∏n
i=1 xi. We observe that xn = pn(x, . . . , x). If k ≤ n, we can also

associate to xk the n-affine symmetric map

ek(x1, . . . , xn) =
1(
n
k

) ∑
{i1,...,ik}⊂[n]

pk(xi1 , . . . , xik)

where [n] is the set {1, . . . , n} of integers. The ek are usually called the elementary
symmetric polynomials. We also observe that xk = ek(x, x, . . . , x). Hence, every
degree n polynomial p(x) =

∑n
i=0 aix

i can be associated the n-affine symmetric map

ϕ =
n∑
i=0

anek (9)

so that p(x) = ϕ(x, . . . , x). We call ϕ the n-affine polar form associated to p.

Theorem 9 Every polynomial p of degree at most n has a unique n-affine polar form,
i.e., a unique n-affine symmetric map ϕ such that

p = ϕ ◦ diag

where diag : R→ Rn is the map diag(x) = (x, . . . , x︸ ︷︷ ︸
n

).

Proof. Equation (9) shows the existence of a polar map. The difficult part is to
show uniqueness. We provide two proofs. The first proof gives an intrinsic and explicit
formula for the polar form in terms of p. The second proof shows that the polar form
establishes an isomorphism between polynomials of degree at most n and n-affine maps.
The proof are somehow technical and are essentially here for the interested reader.

First proof. It suffices to show that any n-affine symmetric map f : Rn → R is entirely
determined by its restriction to the diagonal pf = f ◦ diag : R → R. For this, we show
that

n!f(x1, . . . , xn) =
∑
I⊂[n]

(−1)n−|I||I|npf
(∑

i∈I xi

|I|
)

(10)

4An affine combination of y1, . . . , yk is any combination
∑

i αiyi with
∑

i αi = 1. Thus, a convex
combination is an affine combination with non-negative coefficients.
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We denote the right hand side as F (x1, . . . , xn). Note that F only depends on pf . We

view
∑
i∈I xi
|I| as an affine combination of the xi with weights 1

|I| . By (8), we have

pf
(∑

i∈I xi

|I|
)

= f
(∑

i∈I xi

|I|
, . . . ,

∑
i∈I xi

|I|
)

=
1

|I|n
∑

(i1,...,in)∈In
f(xi1 , . . . , xin)

Reporting in (10), we obtain

F (x1, . . . , xn) =
∑
I⊂[n]

(−1)n−|I|
∑

(i1,...,in)∈In
f(xi1 , . . . , xin) (11)

Let α = (α1, . . . , αn) ∈ [n]n denote a multi-index and let Iα be the set of distinct indices
in α. Hence, for n = 5 and α = (2, 1, 2, 4, 4), we have Iα = {1, 2, 4}. We also define Sα =
{I ⊂ [n] | Iα ⊂ I}. In our example, Sα =

{
{1, 2, 4}, {1, 2, 3, 4}, {1, 2, 4, 5}, {1, 2, 3, 4, 5}

}
.

We finally write xα for (xα1 , . . . , xαn). Equation (11) can now be written

F (x1, . . . , xn) =
∑
α∈[n]n

( ∑
I∈Sα

(−1)n−|I|
)
f(xα)

We now observe that the map I 7→ [n] \ I is a bijection between Sα and the power set
P([n] \ Iα), the set of all subsets of the complement of Iα in [n]. Unless a set is empty,
its power set contains as many subsets of even and odd cardinal (this is an exercise). It
follows that, unless α is a permutation of [n],∑

I∈Sα

(−1)n−|I| = 0

Hence, using the fact that the set Sn of permutations of [n] contains n! permutations and
using that f is symmetric, the equation for F reduces to

F (x1, . . . , xn) =
∑
α∈Sn

f(xα) = n!f(x1, . . . , xn)

which was to be proven.

Second proof. By (8) and writing xi = (1− xi).0 + xi.1 we have for any n-affine map
f :

f(x1, . . . , xi, . . . , xn) = (1− xi)f(x1, . . . , xi−1, 0, xi+1, . . . , xn)

+ xif(x1, . . . , xi−1, 1, xi+1, . . . , xn)

Assuming that f is also symmetric, we can reorder the n parameters as we wish. With
this mind, we can expand f as

f(x1, . . . , xn) =
∑
I⊂[n]

(∏
i∈I

(1− xi)
∏

j⊂[n]\I

xj
)
f(0, . . . , 0︸ ︷︷ ︸

|I|

, 1, . . . , 1︸ ︷︷ ︸
n−|I|

)

=
n∑
k=0

∑
I⊂[n]
|I|=k

(∏
i∈I

(1− xi)
∏

j⊂[n]\I

xj
)
f(0, . . . , 0︸ ︷︷ ︸

k

, 1, . . . , 1︸ ︷︷ ︸
n−k

)
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Putting rk(x1, . . . , xn) =
∑

I⊂[n]
|I|=k

(∏
i∈I(1− xi)

∏
j⊂[n]\I xj

)
we obtain f as a linear combi-

nation of the n-affine symmetric maps rk:

f =
n∑
k=0

f(0, . . . , 0︸ ︷︷ ︸
k

, 1, . . . , 1︸ ︷︷ ︸
n−k

)rk (12)

It follows that the set of n-affine symmetric maps, viewed as a subspace of R[x1, . . . , xn],
has dimension at most n + 1. It has in fact exactly this dimension since it contains the
elementary symmetric polynomials that are clearly independent (you can use successive
partial derivations to see this). But the set of univariate polynomials of degree at most
n has dimension n+ 1 too. The linear map Φ : p 7→ ϕ defined by (9) and the linear map
Ψ : f 7→ f ◦ diag are thus inverse isomorphisms since we obviously have Ψ ◦ Φ = Id.

3.2 Derivatives and Polar Forms

We will see that the derivatives of a polynomial can be computed from its polar form. We
first need the following lemma whose easy proof is left to the reader. It essentially tells
that for any affine map f , the map f − f(0) is linear.

Lemma 10 Let f : R→ R be an affine map. Then,

• for any a, b ∈ R, the value f(b)−f(a) only depends on b−a, i.e., f(b+h)−f(a+h) =
f(b)− f(a) for all h.

• for any λ, a ∈ R, we have f(λa)− f(0) = λ(f(a)− f(0)).

As a corollary, if ϕ : Rn → R is n-affine then

ϕ(x1, . . . , xn−1, xn + h)− ϕ(x1, . . . , xn−1, xn) = h
(
ϕ(x1, . . . , xn−1, 1)− ϕ(x1, . . . , xn−1, 0)

)
We now state the relationship between the derivatives of a polynomial p of degree at most
n and its n-affine polar form ϕ.

Proposition 11 For any 0 ≤ k ≤ n and any x ∈ R:

p(k)(x) =
n!

(n− k)!

k∑
j=0

(−1)k−j
(
k

j

)
ϕ(x, . . . , x︸ ︷︷ ︸

n−k

, 0, . . . , 0︸ ︷︷ ︸
k−j

, 1, . . . , 1︸ ︷︷ ︸
j

) (13)

Proof. The proof is by recursion on k. We first prove the formula for k = 1. We
have

p(x+ h)− p(x)

h
=

1

h
(ϕ((x+ h)(n))− ϕ(x(n))) =

1

h
(ϕ(x+ h, . . . , x+ h)− ϕ(x, . . . , x))

=
1

h

n∑
j=1

(
ϕ(x+ h, . . . , x+ h︸ ︷︷ ︸

j

, x, . . . , x︸ ︷︷ ︸
n−j

)− ϕ(x+ h, . . . , x+ h︸ ︷︷ ︸
j−1

, x, . . . , x︸ ︷︷ ︸
n−j+1

)
)

=
n∑
j=1

(
ϕ(x+ h, . . . , x+ h︸ ︷︷ ︸

j−1

, x, . . . , x︸ ︷︷ ︸
n−j

, 1)− ϕ(x+ h, . . . , x+ h︸ ︷︷ ︸
j−1

, x, . . . , x︸ ︷︷ ︸
n−j

, 0)
)
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Where the last equality is a consequence of the above corollary and the fact that ϕ is
symmetric. Taking the limit on both sides, we obtain

p′(x) = n(ϕ(x, . . . , x︸ ︷︷ ︸
n−1

, 1)− ϕ(x, . . . , x︸ ︷︷ ︸
n−1

, 0))

We now assume that (13) is true up to order k. We then compute

p(k+1)(x) = (p(k))′(x) =
n!

(n− k)!

k∑
j=0

(−1)k−j
(
k

j

)
d

dx
ϕ(x, . . . , x︸ ︷︷ ︸

n−k

, 0, . . . , 0︸ ︷︷ ︸
k−j

, 1, . . . , 1︸ ︷︷ ︸
j

)

Viewing ϕ(x, . . . , x︸ ︷︷ ︸
n−k

, 0, . . . , 0︸ ︷︷ ︸
k−j

, 1, . . . , 1︸ ︷︷ ︸
j

) as a symmetric (n− k)-affine map and applying the

case k = 1 we have, using the notation x(k) for a parameter x repeated k times:

d

dx
ϕ(x(n−k), 0(k−j), 1(j)) = (n− k)

(
ϕ(x(n−k−1), 0(k−j), 1(j+1))− ϕ(x(n−k−1), 0(k−j+1), 1(j))

)
Reporting in the above expression for p(k+1)(x), we get

p(k+1)(x) =
n!(n− k)

(n− k)!

k∑
j=0

(−1)k−j
(
k

j

)(
ϕ(x(n−k−1), 0(k−j), 1(j+1))− ϕ(x(n−k−1), 0(k−j+1), 1(j))

)
=

n!

(n− k − 1)!

( k∑
j=0

(−1)k−j
(
k

j

)
ϕ(x(n−k−1), 0(k−j), 1(j+1))

+
k∑
j=0

(−1)k−j+1

(
k

j

)
ϕ(x(n−k−1), 0(k−j+1), 1(j))

)
=

n!

(n− k − 1)!

( k+1∑
j=1

(−1)k−j+1

(
k

j − 1

)
ϕ(x(n−k−1), 0(k−j+1), 1(j))

+
k∑
j=0

(−1)k−j+1

(
k

j

)
ϕ(x(n−k−1), 0(k−j+1), 1(j))

)
=

n!

(n− k − 1)!

( k∑
j=1

(−1)k−j+1(

(
k

j

)
+

(
k

j − 1

)
)ϕ(x(n−k−1), 0(k−j+1), 1(j))

+ ϕ(x(n−k−1), 1(k+1)) + (−1)k+1ϕ(x(n−k−1), 0(k+1))
)

=
n!

(n− k − 1)!

( k+1∑
j=0

(−1)k+1−j
(
k + 1

j

)
ϕ(x(n−k−1), 0(k+1−j), 1(j))

In the last equality we used the recursive formula for binomial coefficients
(
k
j

)
+
(
k
j−1

)
=(

k+1
j

)
.
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Corollary 12 Let p and q be two polynomials of degree at most n and let ϕ and ψ their
respective n-polar form. Given x ∈ R and k ≤ n, p and q have the same derivatives up
to order k at x if and only if

ϕ(x(n−k), 0(k−j), 1(j)) = ψ(x(n−k), 0(k−j), 1(j)), for 0 ≤ j ≤ k (14)

Proof. The proof is by recursion on k. The base case k = 0 is a tautology. Suppose
that the corollary is true up to order k. If p and q have equal derivatives up to order
k+ 1 at x then they obviously have equal derivatives up to order k and, by our recursion
assumption, they satisfy the relations (14) in the corollary. We consider the values uk+1,j =
ϕ(x(n−k−1), 0(k+1−j), 1(j))−ψ(x(n−k−1), 0(k+1−j), 1(j)) with 0 ≤ j ≤ k+1 as k+2 unknowns.
Each equality in (14) can be written as a linear equation in these unknowns. Indeed,
thinking of the last parameter x as (1− x).0 + x.1, we derive

uk,j = (1− x)uk+1,j + xuk+1,j+1, 0 ≤ j ≤ k

This leads to k+1 equations that are easily seen to be linearly independent. The condition
p(k+1)(x) = q(k+1)(x) translates by (13) to another independent linear equation. We thus
have k+ 2 independent equations for k+ 2 unknowns and conclude that all the unknowns
must be null, i.e. that (14) is true at order k + 1.

Corollary 13 We use the same notations as in the previous corollary. We also consider
2k real numbers y1 ≤ y2 ≤ · · · ≤ yk < yk+1 ≤ yk+2 · · · ≤ y2k. Then, p and q have the
same derivatives up to order k at x, if and only if

ϕ(x(n−k), yj+1, yj+2, . . . , yj+k) = ψ(x(n−k), yj+1, yj+2, . . . , yj+k), for 0 ≤ j ≤ k (15)

Proof. We just need to show that the conditions (14) and (15) are equivalent. As-
suming (15), we have, after re-ordering the parameters

(ϕ− ψ)(x(n−k), yj+2, . . . , yj+k, yj+1) = 0 and (ϕ− ψ)(x(n−k), yj+2, . . . , yj+k, yj+k+1) = 0

It follows that the affine map u1 7→ (ϕ−ψ)(x(n−k), yj+2, . . . , yj+k, u1) is null. By a simple
recursion we conclude that for all u1, . . . , uk, (ϕ−ψ)(x(n−k), u1 . . . , uk) = 0. In particular,
choosing ui ∈ {0, 1} implies (14). The same argument holds starting with the sequence
(0, . . . , 0︸ ︷︷ ︸

k

, 1, . . . , 1︸ ︷︷ ︸
k

) in place of (y1, y2, . . . , y2k).

3.3 From Splines to Polar Forms

We turn back to the set of splines Sk,T where T = (t0, t1, . . . , tn). To keep the presentation
simple, we assume that T is a strictly increasing sequence. We recall that Sk,T is the set of
Ck−1 piecewise polynomial functions over [t0, tn] whose restriction to each interval [ti, ti+1)
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is a degree k polynomial. We also consider 2k − 2 extra parameters5

t1−k ≤ t1−k ≤ · · · ≤ t0 < tn ≤ tn+1 ≤ · · · tn+k−1
Let π ∈ Sk,T be a spline and denote by pi : R → R the polynomial with the same
restriction as π over [ti, ti+1), for 0 ≤ i ≤ n− 1. Let ϕi be the k-affine polar form of pi.

Lemma 14 pi is entirely determined by ϕi(tj+1, . . . , tj+k) for i− k ≤ j ≤ i.

Proof. We already know from (12) that ϕi, hence pi, is determined by the values
ϕi(0, . . . , 0︸ ︷︷ ︸

`

, 1, . . . , 1︸ ︷︷ ︸
k−`

) for 0 ≤ ` ≤ k. Those values are themselves determined by the

ϕi(tj+1, . . . , tj+k). The proof of this last claim is analogous to the proof of Corollary 15.

Lemma 15 For 1 ≤ i ≤ n− 1, the Ck−1 continuity of π at ti is equivalent to

ϕi(tj+1, . . . , tj+k) = ϕi+1(tj+1, . . . , tj+k), i− k ≤ j ≤ i− 1

Proof. This is precisely condition (15) at order k − 1 applied to x = ti and
(y1, y2, . . . , y2k−2) = (ti−k+1, ti−k+2, . . . , ti−1, ti+1, . . . , ti+k−1, ti+k).

From the two previous lemmas, we see that the spline π ∈ Sk,T is determined by n + k
coefficients c(tj+1, . . . , tj+k) for −k ≤ j ≤ n − 1 such that the polar form ϕi of the
restriction pi of π to [ti, ti+1) satisfies

ϕi(tj+1, . . . , tj+k) = c(tj+1, . . . , tj+k), i− k ≤ j ≤ i

The c(tj+1, . . . , tj+k) are called the control coefficients of π. We simply denote them
by cj = c(tj+1, . . . , tj+k). It is not difficult to see, starting for instance from (12), that
π depends linearly on its control coefficients cj. We thus have a surjective linear map
Sk,T → Rn+k that sends any spline π to its the vector of control coefficients {cj}. Since
dimSk,T = n + k, this map is actually a bijection. Let {βi,k}−k≤i≤n−1 be the reciprocal
image of the canonical basis of Rn+k. It know turns out that

Proposition 16 βi,k is the restriction to [t0, tn) of the B-spline Bi,k defined in Section 1.2.
In other words, the spline whose control coefficients are cj = δi,j is the jth B-spline.

As a consequence, we can write

π =
n−1∑
i=−k

cjBi,k

Here we find the same expression for a spline curve as the one given in Section 1.3. The
control coefficients are thus the control points in the one dimensional case.

5In Section 1.2, we introduced 2k extra parameters. The two more parameters t−k, tn+k are only
needed to define the first and last B-splines in the corresponding basis. But the restrictions of those two
B-splines to the interval [t0, tn) is actually independent of t−k, tn+k . In the more local point of view of
polar forms, those two parameters are not needed.
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Proof of the proposition. In the next section, it is shown that the evaluation
procedure for polar forms applied to the spline π with control coefficients {cj} and the
evaluation procedure of Proposition 7 applied to

∑n−1
i=−k cjBi,k are the same. It follows

that π(t) =
∑n−1

i=−k cjBi,k, i.e. that
∑n−1

i=−k cjβi,k =
∑n−1

i=−k cjBi,k. Since this is true for any
vector of coefficients it must be that {Bi,k} and {βi,k} are the same bases.

3.4 Evaluation and Insertion Revisited

Evaluation. As above, we consider a spline π of degree k whose restriction pi to [ti, ti+1)
has polar form ϕi. Let cj be the control coefficients of π and suppose that for some
t ∈ [ti, ti+1) we want to compute π(t) in terms of the cj. To this end, we set for 0 ≤ r ≤ k:

crj = ϕi(t, . . . , t︸ ︷︷ ︸
r

, tj+1, . . . , tj+k−r) with i− k + r ≤ j ≤ i

In particular, c0j = ϕi(tj+1, . . . , tj+k) = cj and cki = ϕi(t, . . . , t︸ ︷︷ ︸
k

) = pi(t) = π(t). We can

compute cki recursively from the c0j by expressing t as an affine combination of tj+k−r and
tj. Indeed, we can write

t = ωj,k−r(t)tj+k−r + (1− ωj,k−r(t))tj

where we recall that ωj,`(t) =
t−tj

tj+`−tj
. It follows that

cr+1
j = ϕi(t, . . . , t︸ ︷︷ ︸

r+1

, tj+1, . . . , tj+k−r−1)

= ϕi(t, . . . , t︸ ︷︷ ︸
r

, ωj,k−rtj+k−r + (1− ωj,k−r)tj, tj+1, . . . , tj+k−r−1)

= ωj,k−rϕi(t, . . . , t︸ ︷︷ ︸
r

, tj+k−r, tj+1, . . . , tj+k−r−1)

+ (1− ωj,k−r(t))ϕi(t, . . . , t︸ ︷︷ ︸
r

, tj, tj+1, . . . , tj+k−r−1)

= ωj,k−rc
r
j + (1− ωj,k−r(t))crj−1

This is exactly the De Boor-Cox recursion of Proposition 7! Figure 18 illustrates the
evaluation algorithm in terms of polar form.

Knot insertion. Suppose that we want to introduce a new knot τ ∈ [ti, ti+1). π is now
cut into n+1 polynomial pieces {qj}0≤j≤n and the knot sequence becomes (t′1−k, . . . , t

′
n+k) =

(t1−k, . . . , t0, . . . , ti, τ, ti+1, . . . , tn+k). In other words

t′j =


tj if 1− k ≤ j ≤ i
τ if j = i+ 1
tj−1 if i+ 2 ≤ j ≤ n− k
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ϕ3(t, t, t) = p3(t) = π(t)ϕ3(t3, t, t)

ϕ3(t, t, t4)

ϕ3(t2, t3, t)

ϕ3(t3, t, t4)

ϕ3(t3, t, t4)

ϕ3(t1, t2, t3)

ϕ3(t2, t3, t4) ϕ3(t3, t4, t5)

ϕ3(t4, t5, t6)

Figure 18: The evaluation algorithm for a degree 3 spline at t ∈ [t3, t4).

We obviously have

qj =


pj if 0 ≤ j ≤ i− 1
the restriction of pi to [ti, τ) if j = i
the restriction of pi to [τ, ti+1) if j = i+ 1
pj−1 if i+ 2 ≤ j ≤ n

The question is to compute the control coefficients dj of the same spline π with respect to
the new knot sequence. If j+k < i then the sequences (t′j+1, . . . , t

′
j+k) and (tj+1, . . . , tj+k)

are identical and because we are evaluating the same polar forms, we have

dj = dj(t
′
j+1, . . . , t

′
j+k) = cj(tj+1, . . . , tj+k) = cj

Likewise, if j + 1 > i the sequences (t′j+1, . . . , t
′
j+k) and (tj, . . . , tj+k−1) are identical

and we have dj = cj−1. Otherwise the sequence (t′j+1, . . . , t
′
j+k) contains τ . Writing

τ = ω′j,k+1(τ)t′j+k+1 + (1 − ω′j,k+1(τ))t′j similarly as above and noting that ω′j,k+1 = ωj,k
(because t′j+k+1 = tj+k), we obtain

dj(t
′
j+1, . . . , t

′
j+k) = ωj,k(τ)dj(t

′
j+1, . . . , τ̂ , . . . , t

′
j+k+1)

+ (1− ωj,k(τ))dj(t
′
j, . . . , τ̂ , . . . , t

′
j+k)

where . . . , τ̂ , . . . stands for the removal of τ . In other words dj = ωj,k(τ)cj + (1 −
ωj,k(τ))cj−1. We find again the Boehm’s algorithm as in Proposition 8!

Some other course materials can be found on the web:

• http://ibiblio.org/e-notes/Splines/Intro.htm

• http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/

• http://www-ljk.imag.fr/membres/Nicolas.Szafran/ENSEIGNEMENT/MASTER2/

http://ibiblio.org/e-notes/Splines/Intro.htm
http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/
http://www-ljk.imag.fr/membres/Nicolas.Szafran/ENSEIGNEMENT/MASTER2/
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