Francis Lazarus

GIPSA-Lab, CNRS, Grenoble

Combinatorial Maps

A *combinatorial map* encodes a graph cellularly embedded in a surface.

It is also called a *combinatorial surface* or a *cellular embedding of a graph*.

Combinatorial (oriented) Maps

Definition

A combinatorial map (G, ρ) is the data of a graph *G* and a *rotation system* ρ . The rotation system is a permutation on A(G) whose cycles coincide with stars of *G*.

Combinatorial (oriented) Maps

Definition

Equivalently, a map is a triple $S = (A, \rho, -1)$ where ρ is a permutation of A and -1 is a fixed-point free involution on A.

- A vertex of S is a cycle of ρ,
- an edge of S is a cycle of $^{-1}$,
- a face of *S* is a cycle of $^{-1} \circ \rho$,
- $G(S) = (A/\langle \rho \rangle, A, o, -1)$ is the graph of *S*, with $o(a) = \langle \rho \rangle a$.

Definition

A map $(A, \rho, -1)$ is connected if the *monodromy group* $\langle \rho, -$ acts transitively on A. Equivalently G(S) is connected.

Combinatorial (oriented) Maps

Definition

Equivalently, a map is a triple $S = (A, \rho, -1)$ where ρ is a permutation of A and -1 is a fixed-point free involution on A.

- A vertex of S is a cycle of ρ,
- an edge of S is a cycle of ⁻¹,
- a face of *S* is a cycle of $^{-1} \circ \rho$,
- $G(S) = (A/\langle \rho \rangle, A, o, -1)$ is the graph of *S*, with $o(a) = \langle \rho \rangle a$.

Definition

A map $(A, \rho, -1)$ is connected if the *monodromy group* $\langle \rho, -1 \rangle$ acts transitively on *A*. Equivalently *G*(*S*) is connected.

Proposition

Proposition

Proposition

Proposition

Proposition

Proposition

Map Morphisms

Definition

There is an evident notion of map morphism.

Map Morphisms

Definition

A map morphism $(A, \rho, {}^{-1}) \to (B, \sigma, {}^{-1})$ is a function $f : A \to B$ such that

•
$$f \circ \rho = \sigma \circ f$$
 and

•
$$f \circ^{-1} =^{-1} \circ f$$
.

Map coverings

Definition

A map covering is morphism $p : (A, \rho, {}^{-1}) \to (B, \sigma, {}^{-1})$ such that

- The restriction of *p* to each cycle of *ρ* is one-to-one, and
- The restriction of p to each cycle of $(^{-1} \circ \rho)$ is one-to-one.
- i.e., the edges incident to a vertex or to a face are mapped bijectively to the edges incident to the image vertex or face.

Morphisms and Branched Coverings

A morphism $f : (A, \rho, {}^{-1}) \to (B, \sigma, {}^{-1})$ can be realized as a branched covering. Since *f* commutes with ρ a cycle of ρ wraps its image *k* times:

 $f \circ \rho^{n}(\boldsymbol{a}) = \sigma^{n} \circ f(\boldsymbol{a}) \implies \exists k \in \mathbb{N}, |\langle \rho \rangle.\boldsymbol{a}| = k |\langle \sigma \rangle.f(\boldsymbol{a})|$

The integer k is the ramification index of o(a). We often write $e_{o(a)}$ for k.

The same holds for cycles of $^{-1} \circ \rho$. The branched covering is ramified at the center of the corresponding faces.

Morphisms and Branched Coverings

Lemma

A morphism $f : (A, \rho, i) \rightarrow (B, \sigma, j)$ of connected maps is onto.

PROOF.
$$f(A) = f(\langle \rho, \imath \rangle.a) = \langle \sigma, \jmath \rangle.f(a) = B.$$

_emma

All edge fibers have the same size called the degree of f.

Morphisms and Branched Coverings

Lemma

A morphism $f : (A, \rho, i) \rightarrow (B, \sigma, j)$ of connected maps is onto.

Lemma

All edge fibers have the same size called the degree of f.

PROOF. Let $b, b' \in B$. $\exists a, a' \in A : b = f(a)$ and b' = f(a'). Let $h \in \langle \rho, \iota \rangle$ with a' = h(a). By commutation $\exists g \in \langle \sigma, \jmath \rangle : f \circ h = g \circ f$. So, g(b) = g(f(a)) = f(h(a)) = f(a') = b'. Then $h : f^{-1}(b) \to f^{-1}(b')$ is a bijection since $f(c) = b \implies f(h(c)) = g \circ f(c) = g(b) = b'$. \Box

Morphisms and Branched Coverings

Index formula

Let $f : (A, \rho, i) \to (B, \sigma, j)$ a morphism of degree *n*. For any vertex or face *w* of (B, σ, j) :

$$\sum_{f(v)=w} e_v = n$$

PROOF. For an arc *a* incident to *w*, partition $f^{-1}(a)$ according to the origin. In each group with origin *v*, we have e_v arcs of $f^{-1}(a)$.

Morphisms and Branched Coverings

Riemann-Hurwitz Formula

For a morphism $f: S \rightarrow T$ of degree n we have

$$\chi(S) = n \cdot \chi(T) + \sum_{v \in V(S) \cup F(S)} (e_v - 1)$$

PROOF. We now that |A(S)| = n|A(T)| and by Index formula $n = \sum_{f(v)=w} e_v = \sum_{f(v)=w} (e_v - 1) + |f^{-1}(w)|$. So, $\chi(S) = |V(S)| - |A(S)| + |F(S)|$ $= \sum_{w \in V(T)} |f^{-1}(w)| - n|A(T)| + \sum_{w \in F(T)} |f^{-1}(w)|$ $= \sum_{w \in V(T) \cup F(T)} \left(n - \sum_{f(v)=w} (e_v - 1)\right) - n|A(T)|$

Combinatorial Equivalence and Classification

Definition

Combinatorial equivalence is the transitive closure of the relation on maps generated by edge and face splitting.

 Combinatorial equivalence preserves connectivity, orientability and Euler characteristic.

Combinatorial Equivalence and Classification

Definition

Combinatorial equivalence is the transitive closure of the relation on maps generated by edge and face splitting.

 Combinatorial equivalence preserves connectivity, orientability and Euler characteristic.

Edge Contraction

non-loop edge contraction is a combinatorial equivalence.

Francis Lazarus Combinatorial Maps

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Combinatorial Equivalence and Classification

Bipartite Maps

Definition

- A bipartite map is a (monodromy) group ⟨g₀, g₁⟩ < S^E acting transitively on a set of edges *E*. The blue (red) vertices are the orbits of g₀ (g₁), the faces are the orbits of g₀g₁.
- a morphism is a map between edges that "commutes" with the *g_i*'s.

Bipartite Maps vs. Maps

Every map is a bipartite map.

Bipartite Maps vs. Maps

Every map is a bipartite map.

The Universal Map

Let
$$F(2) = \langle a_0, b_0 \rangle$$
.

Definition

The universal map U is the left action of F(2) on itself. Vertices and faces have infinite degree.

G. Jones, 1997

The rank 2 free subgroup $\langle \frac{z}{-2z+1}, \frac{z-2}{2z-3} \rangle$ of the modular group $PSL_2(\mathbb{Z})$ of isometries of the upper halfplane acts freely and transitively on U.

The Universal (Bipartite) Map

Let $F(2) = \langle a_0, b_0 \rangle$. Let (E, g_0, g_1) be a map. Fix $e \in E$. We have a group morphism $F(2) \xrightarrow{\theta} \langle g_0, g_1 \rangle$, $a_i \mapsto g_i$.

The map (E, g_0, g_1) is a quotient of the universal map given by the morphism:

$$\begin{array}{c} F(2) \xrightarrow{f} E \\ b \longmapsto \theta(b)(e) \end{array}$$

Its automorphism group is $\theta^{-1}(S_e)$ where S_e is the stabilizer of e in $\langle g_0, g_1 \rangle$.

f indeed "commutes" with a_i : For $b \in F(2)$ $f(a_i(b)) = \theta(a_i(b))(e) = \theta(a_ib)(e) = g_i(\theta(b)(e)) = g_i(f(b))$

Every map has a "canonical" geometric realization.

The Universal (Bipartite) Map

Let $F(2) = \langle a_0, b_0 \rangle$. Let (E, g_0, g_1) be a map. Fix $e \in E$. We have a group morphism $F(2) \xrightarrow{\theta} \langle g_0, g_1 \rangle$, $a_i \mapsto g_i$.

The map (E, g_0, g_1) is a quotient of the universal map given by the morphism:

$$\begin{array}{c} F(2) \xrightarrow{f} E \\ b \longmapsto \theta(b)(e) \end{array}$$

Its automorphism group is $\theta^{-1}(S_e)$ where S_e is the stabilizer of e in $\langle g_0, g_1 \rangle$.

f indeed "commutes" with a_i : For $b \in F(2)$ $f(a_i(b)) = \theta(a_i(b))(e) = \theta(a_ib)(e) = g_i(\theta(b)(e)) = g_i(f(b))$

Every map has a "canonical" geometric realization.

The Trivial (Bipartite) Map

The trivial map $(\{e\}, 1, 1)$ is spherical.

For every map (E, g_0, g_1) there is a (trivial) morphism onto $(\{e\}, 1, 1)$. It defines a branched covering of the sphere whose monodromy group is $\langle g_0, g_1 \rangle$.

Non Orientable Maps

Consider the set of flags $A \times \{-1, 1\}$, the facial permutation

$$\varphi(\boldsymbol{a},\epsilon) = (\rho^{\epsilon.\sigma(\boldsymbol{a})}(\boldsymbol{a}^{-1}),\epsilon.\sigma(\boldsymbol{a}))$$

and the involution

$$\alpha_0(\boldsymbol{a},\epsilon) = (\boldsymbol{a}^{-1}, -\epsilon.\sigma(\boldsymbol{a}))$$

Non Orientable Maps

We can also describe a non orientable map by a group $\langle \alpha_0, \alpha_1, \alpha_2 \rangle < S^{\mathcal{D}}$ acting on a set D of darts with $\alpha_i^2 = (\alpha_0 \alpha_2)^2 = 1.$ • $V = D/\langle \alpha_1, \alpha_2 \rangle$ • $E = D/\langle \alpha_0, \alpha_2 \rangle$ • $F = D/\langle \alpha_0, \alpha_1 \rangle$ Let $G = \langle a_0, a_1, a_2; a_0^2 = a_1^2 = a_2^2 = (a_0 a_2)^2 = 1 \rangle$. G acts on the left onto itself to define a universal map. We obtain a universal (m, n) type map if we take $G_{m,n} = \langle a_0, a_1, a_2; a_0^2 = a_1^2 = a_2^2 = (a_0 a_2)^2 = (a_0 a_1)^m =$ $(a_1 a_2)^n = 1$.

THANK YOU!