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Quick refresher on groups

Groups. ..

Definition A group is a set with a binary operation such that

@ the order of successive operations does not matter (in
time, not in space),

@ there is a unit,

@ every element has an inverse.
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Quick refresher on groups

Groups. ..

Definition A group is a set with a binary operation such that

@ the order of successive operations does not matter (in
time, not in space),

@ there is a unit,

@ every element has an inverse.

The permutation groups
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Quick refresher on groups

Groups and Morphisms

Definition
A group morphism is a structure preserving map : it commutes
with the operations.
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Quick refresher on groups
Groups and Morphisms

Definition

A group morphism is a structure preserving map : it commutes
with the operations.

exp: (R,+) = (R%, x)
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Quick refresher on groups

Groups and Morphisms

Definition
A group morphism is a structure preserving map : it commutes
with the operations.

Groups and morphisms constitute a category

Francis Lazarus Graphs and Coverings



Quick refresher on groups
Subgroups

@ The operation of a group G induces a group structure on
the left cosets {gH}4cg of H < Giiff H is a normal
subgroup. Then,p: G— G/H, g — gH and kerp = H.

@ Conversally, the kernel of a morphism f : G — J is normal
and G/ ker f ~ Imf.
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Quick refresher on groups
Subgroups

@ The operation of a group G induces a group structure on
the left cosets {gH}4cg of H < Giiff H is a normal
subgroup. Then,p: G— G/H, g — gH and kerp = H.

@ Conversally, the kernel of a morphism f : G — J is normal
and G/ ker f ~ Imf.

Example
The (derived) subgroup [G, G] of commutators of G. It is the
smallest subgroup D such that G/D is commutative.

Vf: G — H with H commutative, 3! f :
f

N

G/[G, G]
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Quicker refresher on Categories and Functors
Categories

Eilenberg - Mac Lane, 1945

A category consists of

@ a class of objects,

@ for any two objects a, b, a set Hom(a, b) of morphisms with
an obvious associative law of composition, such that
Hom(a, a) contains an identity element.
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Quicker refresher on Categories and Functors

Categories

Eilenberg - Mac Lane, 1945
A category consists of
@ a class of objects,

@ for any two objects a, b, a set Hom(a, b) of morphisms with
an obvious associative law of composition, such that
Hom(a, a) contains an identity element.

@ Grp,

@ any group G with a single object a and Hom(a, a) = G,

@ any preordered set with |[Hom(a, b)| =1 < a < b,

@ any oriented graph with Hom(a, b) = { oriented a — b
paths }.
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Quicker refresher on Categories and Functors
Functors

Definition

A functor F between two categories C and D consists of
@ A map Objects(C) — Objects(D),
@ maps Hom(a, b) — Hom(F(a), F(b)) that preserve
identities and the composition laws.
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Quicker refresher on Categories and Functors
Functors

A functor F between two categories C and D consists of
@ A map Objects(C) — Objects(D),
@ maps Hom(a, b) — Hom(F(a), F(b)) that preserve
identities and the composition laws.

@ by forgetting the group structure, we get: Grp— Set,

@ a group morphism f : G — H induces a functor between
the corresponding categories,

@ Algebraic topology is mainly concerned with Top—Grp
and Top—Ab.
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Free Groups

Free Groups

The free group F(S) on a set S is defined by the universal
property : ¥f: S — G,3l p

F(S)

\/

F(S) can be realized as the set of freely reduced words in S :

F(S)={s{"---s7"|si€ S, s\ #5 7}
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Free Groups

Free Groups

The free group F(S) on a set S is defined by the universal
property : ¥f: S — G,3l p

F(S)

\/

F(S) can be realized as the set of freely reduced words in S :

F(S)={s{"---s7"|si€ S, s\ #5 7}

F({s}) ~
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Free Groups
Group Presentations

Definition

For a set S and a set R C F(S) of relators, the groups with
presentation (S; R) is the quotient F(S)/N where N is the
normal closure or R in F(S).

(8; R) = (SuUS)*/ ~with
uv ~uss~'v~urv,¥se SUS ' VreR.
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Free Groups
Group Presentations

Definition

For a set S and a set R C F(S) of relators, the groups with
presentation (S; R) is the quotient F(S)/N where N is the
normal closure or R in F(S).

(8; R) = (SuUS)*/ ~with
uv ~uss~'v~urv,¥se SUS ' VreR.

@ F(S)=(S; ),

@ Forany group, G = (G; xyz~ ',z = xy)
o ({s};,s"Y~2Z/nZ,

o (S: {ls. s es) ~ 2"
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What is a Graph?

Basic definitions and notation

Formally, a general graph I' consists of three things: a set V'I", a set £T
and an incidence relation, that is, a subset of VI' x ET. An element
of VT is called a verter, an element of ET is called an edge, and the
incidence relation is required to be such that an edge is incident with
either one vertex (in which case it is a loop) or two vertices. If every

Algebraic Graph Theory, Biggs, 1974/1993

1.1 Graphs

A graph X consists of a verter set V(X) and an edge set E(X), where an
edge is an unordered pair of distinct vertices of X. We will usually use zy
rather than {z,y} to denote an edge. If xy is an edge, then we say that

A Jdacnibna thic hee

Algebraic Graph Theory, Godsil and Royle, 2001
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What Really is a Graph

Definition

A graph is a quadruple (V,A,0,~ '), witho: A— Vand ~'isa
fixed-point free involution of A.

Trees, Serre, 1977 (translated by Stillwell)
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Graph Morphisms

14 Homomorphisms

Y) is a homor

Let X and Y be graphs. A mapping f from V(X) to V( AHCE
phism if f(z) and f(y) are adjacent in Y whenever z and y are adjage:r in
X. (When X and Y have no loops, which is our usual case, this definition
implies that if x ~ y, then f(z) # f(v).)

Algebraic Graph Theory, Godsil and Royle, 2001
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Graph Morphisms

14 Homomorphisms

Let X and Y be graphs. A mapping f from V(X)toV(Y)isa hgruu'
phism if f(z) and f(y) are adjacent in Y whenever r and y are adjaf‘e:r in
X. (When X and Y have no loops, which is our usual case, this definition

implies that if{r ~ Y, then f(z) %ﬂ.y)'). N L
Algebraic Graph Theory, Godsil and Royle, 2001

“There is a evident notion of morphisms for graphs”,
Trees, Serre.
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Graph Morphisms

Definition |

A morphism (V, A, 0,7 1) — (W, B, 0, ") is given by
f:VoW,g:A- Bwithoog=Ffooandgo ' =" og.

A non-loop edge contraction is not a morphism for Definition 1.
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Graph Morphisms

Definition |

A morphism (V, A, 0,7 1) — (W, B, 0, ") is given by
f:VoW,g:A- Bwithoog=Ffooandgo ' =" og.

A non-loop edge contraction is not a morphism for Definition 1.

Definition Il

A morphism (V,A,0,7") — (W, B,0,7") is given by
f: VUA— WU B, with f(V) ¢ W and f commutes with o and
1
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Graphs and Fundamental Groups
Homotopy

A loop with basepoint vin G = (V, A, 0,7") is a sequence of
arcs (ay, ..., an) with
o(ai) = o(a,') = vand o(a) = o(a;,}).

Definition

We say that (a1,...,a,a',...,ay) and (a1,...,an) are
elementarily homotopic.
Homotopy is the transitive closure of elementary homotopies.
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Graphs and Fundamental Groups
Homotopy

A loop with basepoint vin G = (V, A, 0,7") is a sequence of
arcs (ay, ..., an) with
o(ai) = o(a,') = vand o(a) = o(a;,}).

Definition

We say that (a1,...,a,a',...,ay) and (a1,...,an) are
elementarily homotopic.
Homotopy is the transitive closure of elementary homotopies.

The set of homotopy classes with basepoint v is a group for the
concatenation of paths. It is denoted 71 (G, v).
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Graphs and Fundamental Groups
Homotopy

For a bouquet B, of ncycles: 71(Bp) ~ F(n)

PROOF. Paths in B, are words in A(B,). Two paths are
homotopic iff they freely reduce to the same word. So,
m1(Bn) ~ F (A (Bn)). O
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Graphs and Fundamental Groups
The Homotopy Functor

A morphism f: (G, v) — (H, w) induces a group morphism
f. : (G, v) — m(H,w) using

(a1,...,an) — (f(ay),...,f(an))
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Graphs and Fundamental Groups
The Homotopy Functor

A morphism f: (G, v) — (H, w) induces a group morphism
f. : (G, v) — m(H,w) using

(a1,...,an) — (f(ay),...,f(an))

A non-loop edge contraction induces a group isomorphism:
B~ B with g = f(a) andp’ = f(¢/) = a ~ .
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Graphs and Fundamental Groups
71 of Graphs

Let T be a spanning tree of a graph G with basepoint v.
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Graphs and Fundamental Groups
71 of Graphs

Let T be a spanning tree of a graph G with basepoint v.
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Graphs and Fundamental Groups
71 of Graphs

The contraction ¢ : G — B induces an isomorphism.

(o]
ﬁ B
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Graphs and Fundamental Groups
71 of Graphs

The contraction ¢ : G — B induces an isomorphism.

(o]
ﬁ B

— m1(G,v) = F(A.(B))
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Graphs and Fundamental Groups
71 of Graphs

The contraction ¢ : G — B induces an isomorphism.

(o]
ﬁ B

— m(G,v) ~ F(AL(B))

The edges of B are the chords of T in G.
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Graphs and Fundamental Groups
71 of Graphs

If G is connected,

m(G,v) = (AL(G\ T); —)

rank 11 (G, v) = |[A(G\ T)| = 4L — |V| + 1
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Graphs and Fundamental Groups
71 of Graphs

If G is connected,

m(G,v) = (AL(G\ T); -)

rank 71 (G, v) = |[A (G\ T)| = 4L — |V| + 1

va = T[v,0(a)].a.T(o(a™ "), v]
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Graphs and Fundamental Groups

71 of Graphs

If G is connected,
(G, V) = (A(G\ T); —)

rank 71 (G, v) = |[A (G\ T)| = 4L — |V| + 1

m(va) =a (inB) = m(G,v) = ({va}taca,(a\T); —)
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Graph Coverings

Graph Coverings

Gao et al., 1998
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Graph Coverings
Covering

Let G be a graph. For v € V(G), let
Star(v) .= {ac A(G) | o(a) = v}.

Definition

@ A graph (epi)morphism p : H — G is a covering if the
restriction p : Star(w) — Star(p(w)) is bijective for all
w e V(H).

@ Gisthe base of p. For v € V(G), the set p~'(v) is the
fiber above v.

=L
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Graph Coverings
Covering

Let G be a graph. For v € V(G), let
Star(v) .= {ac A(G) | o(a) = v}.

Definition

@ A graph (epi)morphism p : H — G is a covering if the
restriction p : Star(w) — Star(p(w)) is bijective for all
w e V(H).

@ Gisthe base of p. For v € V(G), the set p~'(v) is the
fiber above v.

=
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Unique Lift Property

Let p: H — G be a covering and let v be a path in G.

Definition
A path ¢ in H with p(9) = v is called a lift of ~.

Let w € V(H) with p(w) =
with origin w.

W p—> o()

o(). There exists a unique lift of ~
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Unique Lift Property

Let p: H — G be a covering and let v be a path in G.

Definition
A path ¢ in H with p(9) = v is called a lift of ~.

Let w € V(H) with p(w) =
with origin w.

W p—> o()

o(). There exists a unique lift of ~
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Unique Lift Property

Let p: H — G be a covering and let v be a path in G.

Definition
A path ¢ in H with p(d) = ~ is called a lift of ~.

Let w € V(H) with p(w) =
with origin w.

%W: ,; P - o(")

o(). There exists a unique lift of
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Lift of Homotopies

Let p: H — G be a covering.

Let a ~ 8 be two homotopic paths in G. Let & and /3 be
respective lifts with the same origin. Then & ~ f.

PROOF. By induction on the number of elementary
homotopies separating o« and 5. O

ps is injective.

PROOF.
p:la] = pfB] < pla) ~ p(B) = a~ B = [a] =[8]. O
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Graph Coverings

Lift of Homotopies: Application

F(Xo) < F(n) < F(2)
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Graph Coverings

Lift of Homotopies: Application

F(Xo) < F(n) < F(2)

PROOF.
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Graph Coverings

Lift of Homotopies: Application

F(Xo) < F(n) < F(2)

PROOF.

L]
Remark: v € p.mi(Flower,) < |y]a=0 mod n =
p.m1(Flower,) < 1 (Flower,), i.e., F(n) < F(2). Whatis F(2)/F(n)?
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Graph Coverings
Subgroups and Coverings

Proposition

Let G be a connected graph. For every subgroup U < 71(G, v),
there exists a connected covering py : (Gy, w) — (G, v) with
pu.m1(Gy,w) = U.

Let T be spanning tree of G and v, = T[v,0(a)].a.T(o(a™ "), v].
Define Gy, py by
° V(Gu) = V(G) x {Ug}ger (Gx)>
A(Gu) = A(G) x {Ud}ger (a.x)
® o(a,Ug) = o(a) and (a,Ug)~" = (a ', Uglval),
@ py is the proj. on first component.

2 o (o(a "), Ugha)
o(o(a"), Ugly
(a~ " Ughal) :
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Graph Coverings
Subgroups and Coverings

Example

Put g := [ya], S0 71(G, V) =< g >. Let U =< ¢? >.

(v, Ug)
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Graph Coverings
Subgroups and Coverings

@ py is a covering: Star(x, Ug) = Star(x) x {Ug}
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Graph Coverings
Subgroups and Coverings

@ py is a covering: Star(x, Ug) = Star(x) X {Ug}

@ Gy is connected: For a path a = (ay, .. ) put
Yo = Ya, -+ Ya,- Observe that (v, U).[a] = ), Ulal)-
v, Ug)
(x. U) (x, Ug)
VN (

%\/
w T[v.x]
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Graph Coverings
Subgroups and Coverings

@ py is a covering: Star(x, Ug) = Star(x) x {Ug}
@ Gy is connected: For a path o = (ay, ..., an), put

Yo = Vay -+ Va,- Observe that (v, U).[o] = (t(), Ulya))-
® py.m(Gu,(v,U)) = U:

[A] € Impy, < (v, U).[N=(v,U)= UN=U<[\NecU
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Graph Coverings

Subgroups and Coverings: Examples

Definition
When U = {1}, Gy is the universal cover.

+++

4

| T >
;4‘ ’1‘4

KR

H

we have
o € pmi(ZPGrid) < |a|a = |alp = 0 & a € [F(2), F(2)]. So,
for G = B,, G[G,G] = Z?Grid.
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Graph Coverings

Subgroups and Coverings: Application

Nielsen-Schreier theorem, mid 1920’s
Every subgroup of a free group is free.

—

PrRoOOF. Realize F(S) as the 7y of a bouquet of |S| circles.
A subgroup of F(S) is the ¢ of a covering graph, which we
know to be free. 0O

Note: Another proof uses the fact that a group is free iff it acts
freely on a tree (Bass-Serre). Any subgroup acts obviously
freely on the same tree.
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Graph Coverings
Covering Morphisms

A morphism f between coveringsp: H - Gandq: K — G
f
H K

sends fibers to fibers. It satisfies: X y

G
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Graph Coverings
Covering Morphisms

There is a morphism f between coverings p : (H,v) — (G,
and q: (K,w) — (G,u) iff p.m1(H, v) < g.m1(K, w) in (G,

u

)
u).

PROOF. For x € V(H), v: v~ x, set f(x) = w.p.[7].
If A: v~ x then w.p.[\] = w.p. [\ 1].pu[y] = w.pi[r]
H

v x| @ K f(x)/ f(a

\p /q

@ We have go f = p: q(f(x)) = q(w.p.[7]) = t(p(7)) = p(x).
@ We also check that f commutes with o and .
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Graph Coverings
Covering Morphisms

Lemma

There is a morphism f between coverings p: (H,v) — (G, u)
and q: (K,w) — (G,u) iff p.m1(H, v) < g.m1(K, w) in 71 (G, u).

Corollary

There is an isomorphism f between coverings p: H — G and
g: K— Giff p,mry(H, v) and g.71(K, w) are in the same
conjugacy class in m1(G, u) for p(v) = g(w) = u.

PROOF. = : By the lemma we must have
p«m1(H,v) = q.m (K, f(v)) in 71(G, u).
«=: Suppose p.m1(H,v) = [y]7'.q.m1 (K, w).[7]. But
[V~ ".q.m1 (K, w).[7] = q.71(K, w.[y]) and we can apply the
lemma with f(v) = w.[y] O
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Graph Coverings
Covering Morphisms

Lemma

There is a morphism f between coverings p : (H,v) — (G, u)
and q: (K,w) — (G, u) iff p.m1(H, v) < q.m (K, w) in 71(G, u)

4

Corollary

There is an isomorphism f between coverings p: H — G and
q: K— Giff pori(H, v) and q.71(K, w) are in the same
conjugacy class in m1(G, u) for p(v) = g(w) = u.

A morphism between coverings is a covering.

PROOF. Since restrictions of p and q to stars are
one-to-one and since q o f = p it must be the case for f. O

Francis Lazarus Graphs and Coverings



Graph Coverings
The Set of Coverings

Theorem
The set of coverings of a graph G, up to isomorphism,
corresponds to the set of conjugacy classes of subgroups of
71(G) with the preorder relation H > K if 3g € m1(G) with
g~ 'Hg C K.

The universal covering is the maximal element.
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Actions and Quotients

Actions and Quotient Graphs

Jenn3D, F. Obermeyer
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Actions and Quotients

Quotient Graphs

Definition
Let I' < Aut(G) acts without (arc) inversion. The quotient graph
G/TI is given by
o V(G/T) =1l v}iev(g):
@ A(G/T) ={T - a}aca(G),
eofl-a=r-o@and(r-a'=r-a

Note: I' acts without inversion < (F-a)~' AT - a

— )
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Actions and Quotients
Free Actions

Definition

I < Aut(G) acts freely if it acts without inversion and
g € I'\ {1} does not fix any vertex.
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Actions and Quotients

Free Actions

Definition

I < Aut(G) acts freely if it acts without inversion and
g € I'\ {1} does not fix any vertex.

Proposition

If I acts without inversion then pr : G — G/T is an
epimorphism. It is a covering iff I acts freely on G.

PROOF. pr restricted to Stars must be injective Let g ;é Id
fix a vertex. Then Ja € A(G) : a # g(a) and o(a

e N
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Actions and Quotients
Free Actions

If I acts freely on G then (pr).m (G, v) < w1 (G/T,T - v)

PrRoOF. pr(v.B) =pr(v) = 3geTl :g(v)=v.8. So,
v.(Bpr(a)B8™") = g(v).(pr(a)8~") = (g(v)-pr(e))B~" =
gv).s'=v. O

Pr
v > Mv
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Actions and Quotients
Free Actions

If I acts freely on G then (pr).71(G, v) < m1(G/T,T - v)

PRrRooOF. pr(v.8)=pr(v) = 3geTl:g(v)=v.p. So,
v.(Bpr(a)8™") = g(v).(pr(a)8~") = (g(v)-pr(e))B~" =
gv).8'=v. O

Hg(V) ' LU @

v M-v
3 ‘ﬁ
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Actions and Quotients

Action of the Covering Automorphisms

A p-(auto)morphism of a covering p : H — G satisfies:
f
H

N

Aut(p) := set of p-automorphisms.

Aut(p) acts freely on H.

Let f € Aut(p). f(a)=a ' — p(a)=p(a')=p(a)',
contradiction.

f(v)=v = Va:v~x, f(x)=1fv).pla)=v.pla)=x.
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Actions and Quotients

Quotients and Coverings

If I acts freely on G then Aut(pr) =T.

PROOF. Obviously, ' C Aut(pr) and I acts transitively on
the fibers of pr. Since Aut(pr) acts freely, Aut(pr) C . O
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Actions and Quotients

Quotients and Coverings

If I acts freely on G then Aut(pr) =T.

If p: (H,v)— (G,u) is a covering with p.m1(H, v) < m1(G, u)
then Aut(p) acts transitively on fibers.

PROOF. p(w)=p(v) = p.mi(H, w) = p.mi(H, V).
We construct f € Aut(p) such that f(v) = w: If o : v ~» x set
= w.[p(a)]. If B: v~ x then

W [p B)] = w.[p(Ba"][p(e)] = w.[p()].

%X -
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Actions and Quotients

Quotients and Coverings

H

Letp: H— G. If T < Aut(H)then " P iff
HIr ==@G

Q I = Aut(p)

e p*7T1(H7 V) < 7'['1(G, p(V))

PROOF. —:
@ pr covering = T acts freely = T = Aut(pr) = Aut(p)
by lemma .
@ By lemma |, we also have pr,71(H, v) < w1 (H/T, pr(v))
whence p.m1(H, v) < m(G, p(v)).
<: In that case Aut(p) acts transitively by Lemma Ill, so
H/Aut(p) ~ G. O
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Actions and Quotients

Galois Coverings

Definition
A covering as above is said Galois or regular or normal.

—

If p: H— G is a covering then

Aut(p) = N (p.m1(H, v)) /p«m1(H, v).
If pis Galois Aut(p) ~ m1(G, p(v))/p«m1(H, v).
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Actions and Quotients

Galois Coverings

Definition
A covering as above is said Galois or regular or normal.

If p: H— G is a covering then

Aut(p) ~ N (p,m1(H, v)) /pri (H, ).
If pis Galois Aut(p) ~ 71(G, p(v))/p«m1(H, V).

”
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Actions and Quotients

Galois Coverings

Definition
A covering as above is said Galois or regular or normal.

If p: H— G is a covering then
Aut(p) ~ N (p.m1(H, v)) /p«m1(H, v).
If pis Galois Aut(p) ~ m1(G, p(v))/p«m1(H, V).

PROOF. Aut(p) = p~'(v), f > f(v). Put f, := F~1(w), i.e.
fu(v) = w. Let (G, p(v)) % Aut(p), o — fy ..
M is a morphism: M(a5)(v) = fy.a3(V) = v.af = (v.a).f =
fv.a(V)-B = fv.a(V-B) =Tfyqo0 fvﬂ(V)- So!
M(aB) = fy.q 0 fy 3 = M(a) o M(B).
kerM = {a|v.a=v}=pm(H,v). O
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Voltage Graphs

Gross and Tucker, 1987
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Voltage Graphs, Gross 1974

Definition

A voltage on a graph G with values in group B is a map
k : A(G) — B with

k@) =kr(a)~!, VaeAG)

If B acts on the right on the set S, the voltage induces a
covering p. : Gx. — G where

e V(G.) = V(G) x Sand A(G.) = A(G) x S, and

@ o(a,s) :=(o(a),s)and (a,s)" " := (a ', s.k(a))
(as) . RN
(0(3)73) m (O(a )73' (a))
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Voltage Graphs and Coverings

Every covering p: H — G is (~ to) the covering induced by a
voltage on G.

PROOF. Let T be a spanning tree of (G, v). Define
k: A(G) — m1(G, V) by k(a) = 2 = T[v,0(a)].a.T[o(a™ "), V]
with 71 (G, v) acting on the fiber p='(v).
Checkthat Gx — = H

PK\G/P
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Voltage Graphs and Coverings

Proposition

A voltage « : A(G) — B with B acting on itself and B =< Imk >
induces a Galois covering.

PRoOOF. Note that for o € m1(G, v), (v, 1g).a = (v, s(cx)), SO
that for the induced morphism « : 71(G, v) — B we have
kerk = P, m(Gk, (v,15)). O
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Voltage Graphs and Coverings

Proposition

A voltage « : A(G) — B with B acting on itself and B =< Imx >
induces a Galois covering.

Proposition

Conversely, a Galois covering p: H — G is induced by a
voltage « : A(G) — B with B acting on itself.

PROOF. Let T be a spanning tree of G. For every a € A(G)
there is a unique f; € Aut(p) with f3(v) = v.v4. We let
B = Aut(p) and k(a) = fa.
Checkthat G» —=H [

pﬁ\ G /,0
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Voltage Graphs
Summary

Quotient Coverings
or
grephs voltage graphs
Non-free Galois coverings Non-Galois
actions coverings

Auto-acting voltages
@ O Free actions m »X
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