Graphs and Coverings

Francis Lazarus

GIPSA-Lab, CNRS, Grenoble

Groups...

Definition

Definition A group is a set with a binary operation such that

- the order of successive operations does not matter (in time, *not* in space),
- there is a unit,
- every element has an inverse.

Example

The permutation groups

Groups...

Definition

Definition A group is a set with a binary operation such that

- the order of successive operations does not matter (in time, *not* in space),
- there is a unit,
- every element has an inverse.

Example

The permutation groups

Quick refresher on groups

Groups and Morphisms

Definition

A group morphism is a structure preserving map : it *commutes* with the operations.

Example

 $\mathsf{exp}:(\mathbf{\mathbb{R}},+)\to(\mathbf{\mathbb{R}}^*_+,\times)$

Groups and morphisms constitute a category

Quick refresher on groups

Groups and Morphisms

Definition

A group morphism is a structure preserving map : it *commutes* with the operations.

Example

 $\mathsf{exp}:({\rm I\!R},+)\to({\rm I\!R}_+^*,\times)$

Groups and morphisms constitute a category

Quick refresher on groups

Groups and Morphisms

Definition

A group morphism is a structure preserving map : it *commutes* with the operations.

Example

 $\mathsf{exp}:(\mathbf{\mathbb{R}},+)\to(\mathbf{\mathbb{R}}^*_+,\times)$

Groups and morphisms constitute a category

Subgroups

- The operation of a group *G* induces a group structure on the left cosets {*gH*}_{*g*∈*G*} of *H* < *G* iff *H* is a normal subgroup. Then, *p* : *G* → *G*/*H*, *g* → *gH* and ker *p* = *H*.
- Conversally, the kernel of a morphism *f* : *G* → *J* is normal and *G*/ker *f* ≃ *Imf*.

Example

The (derived) subgroup [G, G] of commutators of G. It is the smallest subgroup D such that G/D is commutative. $\forall f : G \rightarrow H$ with H commutative, $\exists ! \overline{f} :$

Subgroups

- The operation of a group *G* induces a group structure on the left cosets {*gH*}_{*g*∈*G*} of *H* < *G* iff *H* is a normal subgroup. Then, *p* : *G* → *G*/*H*, *g* → *gH* and ker *p* = *H*.
- Conversally, the kernel of a morphism *f* : *G* → *J* is normal and *G*/ker *f* ≃ *Imf*.

Example

The (derived) subgroup [G, G] of commutators of G. It is the smallest subgroup D such that G/D is commutative. $\forall f : G \to H$ with H commutative, $\exists ! \bar{f} :$

Categories

Eilenberg - Mac Lane, 1945

Definition

A category consists of

- a class of objects,
- for any two objects *a*, *b*, a set Hom(a, b) of morphisms with an obvious associative law of composition, such that Hom(a, a) contains an identity element.

Example

- Grp,
- any group G with a single object a and Hom(a, a) = G,
- any preordered set with $|Hom(a, b)| = 1 \Leftrightarrow a \leq b$,
- any oriented graph with Hom(a, b) = { oriented a → b paths }.

Categories

Eilenberg - Mac Lane, 1945

Definition

A category consists of

- a class of objects,
- for any two objects *a*, *b*, a set Hom(a, b) of morphisms with an obvious associative law of composition, such that Hom(a, a) contains an identity element.

Example

• Grp,

- any group G with a single object a and Hom(a, a) = G,
- any preordered set with $|Hom(a, b)| = 1 \Leftrightarrow a \leq b$,
- any oriented graph with Hom(a, b) = { oriented a → b paths }.

Functors

Definition

A functor F between two categories C and D consists of

- A map $Objects(C) \rightarrow Objects(D)$,
- maps Hom(a, b) → Hom(F(a), F(b)) that preserve identities and the composition laws.

Example

- by forgetting the group structure, we get: Grp→Set,
- a group morphism *f* : *G* → *H* induces a functor between the corresponding categories,
- Algebraic topology is mainly concerned with Top→Grp and Top→Ab.

Functors

Definition

A functor F between two categories C and D consists of

- A map $Objects(C) \rightarrow Objects(D)$,
- maps Hom(a, b) → Hom(F(a), F(b)) that preserve identities and the composition laws.

Example

- by forgetting the group structure, we get: Grp→Set,
- a group morphism *f* : *G* → *H* induces a functor between the corresponding categories,
- Algebraic topology is mainly concerned with Top→Grp and Top→Ab.

Definition

The free group F(S) on a set S is defined by the *universal* property : $\forall f : S \rightarrow G, \exists ! \varphi$:

F(S) can be realized as the set of **freely reduced words** in S: $F(S) = \{s_1^{\varepsilon_1} \cdots s_n^{\varepsilon_n} \mid s_i \in S, s_{i+1}^{\varepsilon_{i+1}} \neq s_i^{-\varepsilon_i}\}.$

Example

 $F(\{s\}) \simeq \mathbb{Z}$

Definition

The free group F(S) on a set S is defined by the *universal* property : $\forall f : S \rightarrow G, \exists ! \varphi$:

F(S) can be realized as the set of **freely reduced words** in S: $F(S) = \{s_1^{\varepsilon_1} \cdots s_n^{\varepsilon_n} \mid s_i \in S, s_{i+1}^{\varepsilon_{i+1}} \neq s_i^{-\varepsilon_i}\}.$

Example

 $F({s}) \simeq \mathbb{Z}$

Group Presentations

Definition

For a set *S* and a set $R \subset F(S)$ of relators, the groups with presentation $\langle S; R \rangle$ is the quotient F(S)/N where *N* is the *normal closure* or *R* in F(S).

$$\langle S; R \rangle = (S \cup S^{-1})^* / \sim \text{with}$$

 $uv \sim uss^{-1}v \sim urv, \forall s \in S \cup S^{-1}, \forall r \in R.$

Example

•
$$F(S) = \langle S; - \rangle$$
,

- For any group, $G = \langle G; xyz^{-1}, z = xy \rangle$
- $\langle \{s\}; s^n \rangle \simeq \mathbb{Z}/n\mathbb{Z},$
- $\langle \boldsymbol{S}; \{[\boldsymbol{s}, \boldsymbol{t}]\}_{\boldsymbol{s}, \boldsymbol{t} \in \boldsymbol{S}} \rangle \simeq \mathbb{Z}^n.$

Group Presentations

Definition

For a set *S* and a set $R \subset F(S)$ of relators, the groups with presentation $\langle S; R \rangle$ is the quotient F(S)/N where *N* is the *normal closure* or *R* in F(S).

$$\langle S; R \rangle = (S \cup S^{-1})^* / \sim \text{with}$$

 $uv \sim uss^{-1}v \sim urv, \forall s \in S \cup S^{-1}, \forall r \in R.$

Example

- $F(S) = \langle S; \rangle$,
- For any group, $G = \langle G; xyz^{-1}, z = xy \rangle$
- $\langle \{s\}; s^n \rangle \simeq \mathbb{Z}/n\mathbb{Z},$
- $\langle S; \{[s,t]\}_{s,t\in S} \rangle \simeq \mathbb{Z}^n$.

What is a Graph?

Basic definitions and notation

Formally, a general graph Γ consists of three things: a set $V\Gamma$, a set $E\Gamma$, and an incidence relation, that is, a subset of $V\Gamma \times E\Gamma$. An element of $V\Gamma$ is called a *vertex*, an element of $E\Gamma$ is called an *edge*, and the incidence relation is required to be such that an edge is incident with either one vertex (in which case it is a *loop*) or two vertices. If every

Algebraic Graph Theory, Biggs, 1974/1993

1.1 Graphs

A graph X consists of a vertex set V(X) and an edge set E(X), where an edge is an unordered pair of distinct vertices of X. We will usually use xy rather than $\{x, y\}$ to denote an edge. If xy is an edge, then we say that Algebraic Graph Theory, Godsil and Royle, 2001

What *Really* is a Graph

Definition

A graph is a quadruple (V, A, o, -1), with $o : A \rightarrow V$ and -1 is a fixed-point free involution of A.

Trees, Serre, 1977 (translated by Stillwell)

1.4 Homomorphisms

Let X and Y be graphs. A mapping f from V(X) to V(Y) is a homomorphism if f(x) and f(y) are adjacent in Y whenever x and y are adjacent in X. (When X and Y have no loops, which is our usual case, this definition implies that if $x \sim y$, then $f(x) \neq f(y)$.)

Algebraic Graph Theory, Godsil and Royle, 2001

"There is a evident notion of morphisms for graphs", *Trees, Serre.*

Definition

A morphism $(V, A, o, ^{-1}) \rightarrow (W, B, o, ^{-1})$ is given by $f: V \rightarrow W, g: A \rightarrow B$ with $o \circ g = f \circ o$ and $g \circ ^{-1} = ^{-1} \circ g$.

A non-loop edge contraction is not a morphism for Definition I.

Definition I

1.4 Homomorphisms

Let X and Y be graphs. A mapping f from V(X) to V(Y) is a homomorphism if f(x) and f(y) are adjacent in Y whenever x and y are adjacent in X. (When X and Y have no loops, which is our usual case, this definition implies that if $x \sim y$, then $f(x) \neq f(y)$.)

Algebraic Graph Theory, Godsil and Royle, 2001

"There is a evident notion of morphisms for graphs", *Trees, Serre.*

Definition

A morphism $(V, A, o, {}^{-1}) \rightarrow (W, B, o, {}^{-1})$ is given by $f: V \rightarrow W, g: A \rightarrow B$ with $o \circ g = f \circ o$ and $g \circ {}^{-1} = {}^{-1} \circ g$.

A non-loop edge contraction is not a morphism for Definition I.

Definition I

Definition I

A morphism
$$(V, A, o, {}^{-1}) \rightarrow (W, B, o, {}^{-1})$$
 is given by
 $f: V \rightarrow W, g: A \rightarrow B$ with $o \circ g = f \circ o$ and $g \circ {}^{-1} = {}^{-1} \circ g$.

A non-loop edge contraction is not a morphism for Definition I.

Definition I

A morphism $(V, A, o, {}^{-1}) \rightarrow (W, B, o, {}^{-1})$ is given by $f : V \cup A \rightarrow W \cup B$, with $f(V) \subset W$ and f commutes with o and ${}^{-1}$.

Definition I

A morphism
$$(V, A, o, {}^{-1}) \rightarrow (W, B, o, {}^{-1})$$
 is given by
 $f: V \rightarrow W, g: A \rightarrow B$ with $o \circ g = f \circ o$ and $g \circ {}^{-1} = {}^{-1} \circ g$.

A non-loop edge contraction is not a morphism for Definition I.

Definition II

A morphism
$$(V, A, o, -1) \rightarrow (W, B, o, -1)$$
 is given by $f : V \cup A \rightarrow W \cup B$, with $f(V) \subset W$ and f commutes with o and -1 .

Homotopy

A loop with basepoint v in G = (V, A, o, -1) is a sequence of arcs (a_1, \ldots, a_n) with $o(a_1) = o(a_n^{-1}) = v$ and $o(a_i) = o(a_{i+1}^{-1})$.

Definition

We say that $(a_1, \ldots, a, a^{-1}, \ldots, a_n)$ and (a_1, \ldots, a_n) are elementarily homotopic. Homotopy is the transitive closure of elementary homotopies.

_emma

The set of homotopy classes with basepoint v is a group for the concatenation of paths. It is denoted $\pi_1(G, v)$.

Homotopy

A loop with basepoint v in G = (V, A, o, -1) is a sequence of arcs (a_1, \ldots, a_n) with $o(a_1) = o(a_n^{-1}) = v$ and $o(a_i) = o(a_{i+1}^{-1})$.

Definition

We say that $(a_1, \ldots, a, a^{-1}, \ldots, a_n)$ and (a_1, \ldots, a_n) are elementarily homotopic. Homotopy is the transitive closure of elementary homotopies.

Lemma

The set of homotopy classes with basepoint v is a group for the concatenation of paths. It is denoted $\pi_1(G, v)$.

Homotopy

Lemma

For a bouquet B_n of *n* cycles: $\pi_1(B_n) \simeq F(n)$

PROOF. Paths in B_n are words in $A(B_n)$. Two paths are homotopic iff they freely reduce to the same word. So, $\pi_1(B_n) \simeq F(A_+(B_n))$. \Box

The Homotopy Functor

A morphism $f : (G, v) \rightarrow (H, w)$ induces a group morphism $f_* : \pi_1(G, v) \rightarrow \pi_1(H, w)$ using

$$(a_1,\ldots,a_n)\mapsto (f(a_1),\ldots,f(a_n))$$

Example

A non-loop edge contraction induces a group isomorphism: $\beta \sim \beta'$ with $\beta = f(\alpha)$ and $\beta' = f(\alpha') \implies \alpha \sim \alpha'$.

The Homotopy Functor

A morphism $f : (G, v) \rightarrow (H, w)$ induces a group morphism $f_* : \pi_1(G, v) \rightarrow \pi_1(H, w)$ using

$$(a_1,\ldots,a_n)\mapsto (f(a_1),\ldots,f(a_n))$$

Example

A non-loop edge contraction induces a group isomorphism: $\beta \sim \beta'$ with $\beta = f(\alpha)$ and $\beta' = f(\alpha') \implies \alpha \sim \alpha'$.

Let T be a spanning tree of a graph G with basepoint v.

Let T be a spanning tree of a graph G with basepoint v.

The contraction $c: G \rightarrow B$ induces an isomorphism.

 $\implies \pi_1(G, \mathbf{v}) \simeq F(A_+(B))$

The edges of *B* are the chords of *T* in *G*.

The contraction $c: G \rightarrow B$ induces an isomorphism.

 $\implies \pi_1(G, v) \simeq F(A_+(B))$

The edges of *B* are the <mark>chords</mark> of *T* in *G*.

The contraction $c: G \rightarrow B$ induces an isomorphism.

 $\implies \pi_1(G, v) \simeq F(A_+(B))$

The edges of B are the chords of T in G.

Theorem

If G is connected,

$$\pi_1(G, v) \simeq \langle A_+(G \setminus T); -
angle$$
rank $\pi_1(G, v) = |A_+(G \setminus T)| = rac{|A|}{2} - |V| + 1$

Theorem

If G is connected,

$$\pi_1(G, \mathbf{v}) \simeq \langle \mathbf{A}_+(G \setminus T); - \rangle$$

rank $\pi_1(G, v) = |A_+(G \setminus T)| = \frac{|A|}{2} - |V| + 1$

Theorem

If G is connected,

$$\pi_1(G, \mathbf{v}) \simeq \langle \mathbf{A}_+(G \setminus T); - \rangle$$

rank $\pi_1(G, v) = |A_+(G \setminus T)| = \frac{|A|}{2} - |V| + 1$

 $\pi(\gamma_a) = a \quad (in B) \implies \pi_1(G, v) = \langle \{\gamma_a\}_{a \in A_+(G \setminus T)}; - \rangle$

Graph Coverings

Gao et al., 1998
Covering

Let G be a graph. For
$$v \in V(G)$$
, let
 $Star(v) := \{a \in A(G) \mid o(a) = v\}.$

Definition

- A graph (epi)morphism p : H → G is a covering if the restriction p : Star(w) → Star(p(w)) is bijective for all w ∈ V(H).
- *G* is the base of *p*. For $v \in V(G)$, the set $p^{-1}(v)$ is the fiber above *v*.

Covering

Let G be a graph. For $v \in V(G)$, let $Star(v) := \{a \in A(G) \mid o(a) = v\}.$

Definition

- A graph (epi)morphism p : H → G is a covering if the restriction p : Star(w) → Star(p(w)) is bijective for all w ∈ V(H).
- *G* is the base of *p*. For $v \in V(G)$, the set $p^{-1}(v)$ is the fiber above *v*.

Unique Lift Property

Let $p: H \rightarrow G$ be a covering and let γ be a path in *G*.

Definition

A path δ in *H* with $p(\delta) = \gamma$ is called a lift of γ .

Lemma

Let $w \in V(H)$ with $p(w) = o(\gamma)$. There exists a *unique* lift of γ with origin w.

Unique Lift Property

Let $p: H \rightarrow G$ be a covering and let γ be a path in *G*.

Definition

A path δ in *H* with $p(\delta) = \gamma$ is called a lift of γ .

Lemma

Let $w \in V(H)$ with $p(w) = o(\gamma)$. There exists a *unique* lift of γ with origin w.

Unique Lift Property

Let $p: H \rightarrow G$ be a covering and let γ be a path in *G*.

Definition

A path δ in *H* with $p(\delta) = \gamma$ is called a lift of γ .

Lemma

Let $w \in V(H)$ with $p(w) = o(\gamma)$. There exists a *unique* lift of γ with origin w.

Lift of Homotopies

Let $p: H \rightarrow G$ be a covering.

Lemma

Let $\alpha \sim \beta$ be two homotopic paths in *G*. Let $\tilde{\alpha}$ and $\tilde{\beta}$ be respective lifts with the same origin. Then $\tilde{\alpha} \sim \tilde{\beta}$.

PROOF. By induction on the number of elementary homotopies separating α and β . \Box

Corollary

 p_* is injective.

PROOF. $p_*[\alpha] = p_*[\beta] \Leftrightarrow p(\alpha) \sim p(\beta) \Longrightarrow \alpha \sim \beta \implies [\alpha] = [\beta].$ \Box

Lift of Homotopies: Application

Lemma

 $F(\aleph_0) < F(n) < F(2)$

Remark: $\gamma \in p_*\pi_1(Flower_n) \Leftrightarrow |\gamma|_a \equiv 0 \mod n \implies p_*\pi_1(Flower_n) \lhd \pi_1(Flower_2)$, i.e., $F(n) \lhd F(2)$. What is F(2)/F(n)?

Francis Lazarus Graphs and Coverings

Lift of Homotopies: Application

Lemma $F(\aleph_0) < F(n) < F(2)$ PROOF. а

Remark: $\gamma \in p_*\pi_1(Flower_n) \Leftrightarrow |\gamma|_a \equiv 0 \mod n \implies p_*\pi_1(Flower_n) \lhd \pi_1(Flower_2)$, i.e., $F(n) \lhd F(2)$. What is F(2)/F(n)?

Francis Lazarus

Graphs and Coverings

Lift of Homotopies: Application

Bemark: $\gamma \in p_*\pi_1(Flower_n) \Leftrightarrow |\gamma|_a \equiv 0 \mod n \implies p_*\pi_1(Flower_n) \lhd \pi_1(Flower_2)$, i.e., $F(n) \lhd F(2)$. What is F(2)/F(n)?

Subgroups and Coverings

Proposition

Let *G* be a connected graph. For every subgroup $U < \pi_1(G, v)$, there exists a connected covering $p_U : (G_U, w) \to (G, v)$ with $p_{U*}\pi_1(G_U, w) = U$.

Let *T* be spanning tree of *G* and $\gamma_a = T[v, o(a)] \cdot a \cdot T(o(a^{-1}), v]$. Define G_U, p_U by

•
$$V(G_U) = V(G) \times \{Ug\}_{g \in \pi_1(G,x)}, A(G_U) = A(G) \times \{Ug\}_{g \in \pi_1(G,x)}$$

• o(a, Ug) = o(a) and $(a, Ug)^{-1} = (a^{-1}, Ug[\gamma_a]),$

• p_U is the proj. on first component.

$$(o(a), Ug) \bullet \xrightarrow{(a, Ug)} \bullet (o(a^{-1}), Ug[\gamma_a]) \bullet$$

Subgroups and Coverings

Example

Put $g := [\gamma_a]$, so $\pi_1(G, v) = \langle g \rangle$. Let $U = \langle g^2 \rangle$.

Francis Lazarus Graphs and Coverings

Subgroups and Coverings

- p_U is a covering: $Star(x, Ug) = Star(x) \times \{Ug\}$
- G_U is connected: For a path $\alpha = (a_1, \dots, a_n)$, put $\gamma_{\alpha} = \gamma_{a_1} \cdots \gamma_{a_n}$. Observe that $(v, U).[\alpha] = (t(\alpha), U[\gamma_{\alpha}])$.
- $p_{U_*}\pi_1(G_U, (v, U)) = U$:
 - $[\lambda] \in \mathrm{Im} p_{U_*} \Leftrightarrow (v, U).[\lambda] = (v, U) \Leftrightarrow U[\lambda] = U \Leftrightarrow [\lambda] \in U$

Subgroups and Coverings

- p_U is a covering: $Star(x, Ug) = Star(x) \times \{Ug\}$
- G_U is connected: For a path $\alpha = (a_1, \ldots, a_n)$, put
 - $\gamma_{\alpha} = \gamma_{a_1} \cdots \gamma_{a_n}$. Observe that $(v, U).[\alpha] = (t(\alpha), U[\gamma_{\alpha}]).$

• $p_{U*}\pi_1(G_U, (v, U)) = U$: $[\lambda] \in Im p_{U*} \Leftrightarrow (v, U).[\lambda] = (v, U) \Leftrightarrow U[\lambda] = U \Leftrightarrow [\lambda] \in U$

Subgroups and Coverings

- p_U is a covering: $Star(x, Ug) = Star(x) \times \{Ug\}$
- G_U is connected: For a path $\alpha = (a_1, \ldots, a_n)$, put
 - $\gamma_{\alpha} = \gamma_{a_1} \cdots \gamma_{a_n}$. Observe that $(v, U).[\alpha] = (t(\alpha), U[\gamma_{\alpha}]).$
- $p_{U_*}\pi_1(G_U, (v, U)) = U$: $[\lambda] \in Im p_{U_*} \Leftrightarrow (v, U).[\lambda] = (v, U) \Leftrightarrow U[\lambda] = U \Leftrightarrow [\lambda] \in U$

Subgroups and Coverings: Examples

Definition

When $U = \{1\}$, G_U is the universal cover.

we have

 $\alpha \in p_*\pi_1(\mathbb{Z}^2Grid) \Leftrightarrow |\alpha|_a = |\alpha|_b = 0 \Leftrightarrow \alpha \in [F(2), F(2)].$ So, for $G = B_2$, $G_{[G,G]} = \mathbb{Z}^2Grid$.

Subgroups and Coverings: Application

Nielsen-Schreier theorem, mid 1920's

Every subgroup of a free group is free.

PROOF. Realize F(S) as the π_1 of a bouquet of |S| circles. A subgroup of F(S) is the π_1 of a covering graph, which we know to be free. \Box

Note: Another proof uses the fact that a group is free iff it acts freely on a tree (Bass-Serre). Any subgroup acts obviously freely on the same tree.

Definition A morphism *f* between coverings $p : H \to G$ and $q : K \to G$ sends fibers to fibers. It satisfies: $H \xrightarrow{f} K$ G

Lemma

There is a morphism *f* between coverings $p: (H, v) \to (G, u)$ and $q: (K, w) \to (G, u)$ iff $p_*\pi_1(H, v) < q_*\pi_1(K, w)$ in $\pi_1(G, u)$.

- We have $q \circ f = p$: $q(f(x)) = q(w.p_*[\gamma]) = t(p(\gamma)) = p(x)$.
- We also check that f commutes with o and $^{-1}$.

Lemma

There is a morphism *f* between coverings $p : (H, v) \rightarrow (G, u)$ and $q : (K, w) \rightarrow (G, u)$ iff $p_*\pi_1(H, v) < q_*\pi_1(K, w)$ in $\pi_1(G, u)$.

Corollary

There is an isomorphism *f* between coverings $p : H \to G$ and $q : K \to G$ iff $p_*\pi_1(H, v)$ and $q_*\pi_1(K, w)$ are in the same conjugacy class in $\pi_1(G, u)$ for p(v) = q(w) = u.

PROOF. \implies : By the lemma we must have $p_*\pi_1(H, v) = q_*\pi_1(K, f(v))$ in $\pi_1(G, u)$. \iff : Suppose $p_*\pi_1(H, v) = [\gamma]^{-1}.q_*\pi_1(K, w).[\gamma]$. But $[\gamma]^{-1}.q_*\pi_1(K, w).[\gamma] = q_*\pi_1(K, w.[\gamma])$ and we can apply the lemma with $f(v) = w.[\gamma]$

.emma

Lemma

There is a morphism *f* between coverings $p : (H, v) \rightarrow (G, u)$ and $q : (K, w) \rightarrow (G, u)$ iff $p_*\pi_1(H, v) < q_*\pi_1(K, w)$ in $\pi_1(G, u)$.

Corollary

There is an isomorphism *f* between coverings $p : H \to G$ and $q : K \to G$ iff $p_*\pi_1(H, v)$ and $q_*\pi_1(K, w)$ are in the same conjugacy class in $\pi_1(G, u)$ for p(v) = q(w) = u.

Lemma

A morphism between coverings is a covering.

PROOF. Since restrictions of *p* and *q* to stars are one-to-one and since $q \circ f = p$ it must be the case for *f*. \Box

The Set of Coverings

Theorem

The set of coverings of a graph *G*, *up to isomorphism*, corresponds to the set of conjugacy classes of subgroups of $\pi_1(G)$ with the preorder relation $H \ge K$ if $\exists g \in \pi_1(G)$ with $g^{-1}Hg \subset K$.

The universal covering is the maximal element.

Actions and Quotient Graphs

Jenn3D, F. Obermeyer

Francis Lazarus Graphs and Coverings

Quotient Graphs

Definition

Let $\Gamma < Aut(G)$ acts without (arc) inversion. The quotient graph G/Γ is given by

- $V(G/\Gamma) = {\Gamma \cdot v}_{v \in V(G)}$,
- $A(G/\Gamma) = {\Gamma \cdot a}_{a \in A(G)}$,
- $o(\Gamma \cdot a) = \Gamma \cdot o(a)$ and $(\Gamma \cdot a)^{-1} = \Gamma \cdot a^{-1}$

Note: Γ acts without inversion $\Leftrightarrow (\Gamma \cdot a)^{-1} \neq \Gamma \cdot a$

Definition

 $\Gamma < Aut(G)$ acts freely if it acts without inversion and $g \in \Gamma \setminus \{1\}$ does not fix any vertex.

Proposition

If Γ acts without inversion then $p_{\Gamma} : G \to G/\Gamma$ is an epimorphism. It is a covering iff Γ acts freely on G.

PROOF. p_{Γ} restricted to Stars must be injective. Let $g \neq Id$ fix a vertex. Then $\exists a \in A(G) : a \neq g(a)$ and o(a) = o(g(a)).

Definition

 $\Gamma < Aut(G)$ acts freely if it acts without inversion and $g \in \Gamma \setminus \{1\}$ does not fix any vertex.

Proposition

If Γ acts without inversion then $p_{\Gamma} : G \to G/\Gamma$ is an epimorphism. It is a covering iff Γ acts freely on G.

PROOF. p_{Γ} restricted to Stars must be injective. Let $g \neq Id$ fix a vertex. Then $\exists a \in A(G) : a \neq g(a)$ and o(a) = o(g(a)).

Lemma I

If Γ acts freely on G then $(p_{\Gamma})_*\pi_1(G, v) \lhd \pi_1(G/\Gamma, \Gamma \cdot v)$

PROOF.
$$p_{\Gamma}(v,\beta) = p_{\Gamma}(v) \implies \exists g \in \Gamma : g(v) = v.\beta$$
. So,
 $v.(\beta p_{\Gamma}(\alpha)\beta^{-1}) = g(v).(p_{\Gamma}(\alpha)\beta^{-1}) = (g(v).p_{\Gamma}(\alpha))\beta^{-1} = g(v).\beta^{-1} = v.$ \Box

Lemma I

If Γ acts freely on G then $(p_{\Gamma})_*\pi_1(G, v) \lhd \pi_1(G/\Gamma, \Gamma \cdot v)$

PROOF.
$$p_{\Gamma}(v,\beta) = p_{\Gamma}(v) \implies \exists g \in \Gamma : g(v) = v.\beta$$
. So,
 $v.(\beta p_{\Gamma}(\alpha)\beta^{-1}) = g(v).(p_{\Gamma}(\alpha)\beta^{-1}) = (g(v).p_{\Gamma}(\alpha))\beta^{-1} = g(v).\beta^{-1} = v.$

Action of the Covering Automorphisms

Lemma

Aut(p) acts freely on H.

Let $f \in Aut(p)$. $f(a) = a^{-1} \implies p(a) = p(a^{-1}) = p(a)^{-1}$, contradiction. $f(v) = v \implies \forall \alpha : v \rightsquigarrow x, f(x) = f(v).p(\alpha) = v.p(\alpha) = x.$

Quotients and Coverings

Lemma II

If Γ acts freely on *G* then $Aut(p_{\Gamma}) = \Gamma$.

PROOF. Obviously, $\Gamma \subset Aut(p_{\Gamma})$ and Γ acts transitively on the fibers of p_{Γ} . Since $Aut(p_{\Gamma})$ acts freely, $Aut(p_{\Gamma}) \subset \Gamma$. \Box

_emma III

If $p: (H, v) \to (G, u)$ is a covering with $p_*\pi_1(H, v) \lhd \pi_1(G, u)$ then Aut(p) acts transitively on fibers.

PROOF. $p(w) = p(v) \implies p_*\pi_1(H, w) = p_*\pi_1(H, v).$ We construct $f \in Aut(p)$ such that f(v) = w: If $\alpha : v \rightsquigarrow x$ set $f(x) = w.[p(\alpha)]$. If $\beta : v \rightsquigarrow x$ then $w.[p(\beta)] = w.[p(\beta\alpha^{-1})][p(\alpha)] = w.[p(\alpha)].$

Quotients and Coverings

Lemma II

If Γ acts freely on *G* then $Aut(p_{\Gamma}) = \Gamma$.

Lemma III

If $p: (H, v) \to (G, u)$ is a covering with $p_*\pi_1(H, v) \lhd \pi_1(G, u)$ then Aut(p) acts transitively on fibers.

Quotients and Coverings

Proposition

Let
$$p: H \to G$$
. If $\Gamma < Aut(H)$ then

$$\stackrel{\rho_{\Gamma}}{\swarrow} \stackrel{H}{\searrow} \stackrel{\rho}{\longrightarrow} G$$
 iff

1
$$\Gamma = Aut(p)$$

2 $p_*\pi_1(H, v) \lhd \pi_1(G, p(v))$

Proof. \implies :

- p_{Γ} covering $\implies \Gamma$ acts freely $\implies \Gamma = Aut(p_{\Gamma}) = Aut(p)$ by lemma II.
- 2 By lemma I, we also have $p_{\Gamma_*}\pi_1(H, v) \lhd \pi_1(H/\Gamma, p_{\Gamma}(v))$ whence $p_*\pi_1(H, v) \lhd \pi_1(G, p(v))$.

 $\iff: In that case Aut(p) acts transitively by Lemma III, so <math>H/Aut(p) \simeq G$. \Box

Galois Coverings

Definition

A covering as above is said Galois or regular or normal.

Theorem

If $p: H \to G$ is a covering then $Aut(p) \simeq N(p_*\pi_1(H, v))/p_*\pi_1(H, v).$ If p is Galois $Aut(p) \simeq \pi_1(G, p(v))/p_*\pi_1(H, v).$

Galois Coverings

Definition

A covering as above is said Galois or regular or normal.

Theorem

If $p: H \to G$ is a covering then $Aut(p) \simeq N(p_*\pi_1(H, v))/p_*\pi_1(H, v).$ If p is Galois $Aut(p) \simeq \pi_1(G, p(v))/p_*\pi_1(H, v).$

Example

Graphs and Coverings

Galois Coverings

Definition

A covering as above is said Galois or regular or normal.

Theorem

If $p: H \to G$ is a covering then $Aut(p) \simeq N(p_*\pi_1(H, v))/p_*\pi_1(H, v).$ If p is Galois $Aut(p) \simeq \pi_1(G, p(v))/p_*\pi_1(H, v).$

PROOF.
$$Aut(p) \xrightarrow{F} p^{-1}(v), f \mapsto f(v)$$
. Put $f_w := F^{-1}(w)$, i.e.
 $f_w(v) = w$. Let $\pi_1(G, p(v)) \xrightarrow{M} Aut(p), \alpha \mapsto f_{v.\alpha}$.
M is a morphism: $M(\alpha\beta)(v) = f_{v.\alpha\beta}(v) = v.\alpha\beta = (v.\alpha).\beta = f_{v.\alpha}(v).\beta = f_{v.\alpha}(v.\beta) = f_{v.\alpha} \circ f_{v.\beta}(v)$. So,
 $M(\alpha\beta) = f_{v.\alpha} \circ f_{v.\beta} = M(\alpha) \circ M(\beta)$.
ker $M = \{\alpha \mid v.\alpha = v\} = p_*\pi_1(H, v)$. \Box

Voltage Graphs

Gross and Tucker, 1987

Voltage Graphs, Gross 1974

Definition

A voltage on a graph *G* with values in group *B* is a map $\kappa : A(G) \rightarrow B$ with

$$\kappa(a^{-1}) = \kappa(a)^{-1}, \quad \forall a \in A(G)$$

If *B* acts on the right on the set *S*, the voltage induces a covering $p_{\kappa}: G_{\kappa} \to G$ where

- $V(G_{\kappa}) = V(G) \times S$ and $A(G_{\kappa}) = A(G) \times S$, and
- o(a, s) := (o(a), s) and $(a, s)^{-1} := (a^{-1}, s.\kappa(a))$

$$(o(a), s) \bullet \xrightarrow[(a^{-1}, s \cdot \kappa(a))]{} \bullet (o(a^{-1}), s \cdot \kappa(a))$$
Voltage Graphs and Coverings

Lemma

Every covering $p: H \to G$ is (\simeq to) the covering induced by a voltage on *G*.

PROOF. Let *T* be a spanning tree of (G, v). Define $\kappa : A(G) \to \pi_1(G, v)$ by $\kappa(a) = \gamma_a = T[v, o(a)].a.T[o(a^{-1}), v]$ with $\pi_1(G, v)$ acting on the fiber $p^{-1}(v)$.

Check that $G_{\kappa} \xrightarrow{\simeq} H$ $p_{\kappa} \xrightarrow{\sim} G^{\kappa} p$

Voltage Graphs and Coverings

Proposition

A voltage $\kappa : A(G) \rightarrow B$ with *B* acting on itself and $B = < Im \kappa >$ induces a Galois covering.

PROOF. Note that for $\alpha \in \pi_1(G, \nu)$, $(\nu, 1_B).\alpha = (\nu, \kappa(\alpha))$, so that for the induced morphism $\kappa : \pi_1(G, \nu) \to B$ we have $\ker \kappa = p_{\kappa_*}\pi_1(G_{\kappa}, (\nu, 1_B))$. \Box

Proposition

Conversely, a Galois covering $p : H \to G$ is induced by a voltage $\kappa : A(G) \to B$ with *B* acting on itself.

PROOF. Let *T* be a spanning tree of *G*. For every $a \in A(G)$ there is a unique $f_a \in Aut(p)$ with $f_a(v) = v \cdot \gamma_a$. We let B = Aut(p) and $\kappa(a) = f_a$.

Voltage Graphs and Coverings

Proposition

A voltage $\kappa : A(G) \rightarrow B$ with *B* acting on itself and $B = < Im \kappa >$ induces a Galois covering.

Proposition

Conversely, a Galois covering $p : H \to G$ is induced by a voltage $\kappa : A(G) \to B$ with *B* acting on itself.

PROOF. Let *T* be a spanning tree of *G*. For every $a \in A(G)$ there is a unique $f_a \in Aut(p)$ with $f_a(v) = v \cdot \gamma_a$. We let B = Aut(p) and $\kappa(a) = f_a$. Check that $G_{\kappa} \xrightarrow{\simeq} H_{p_{\kappa}} \square_{p_{\kappa}} \xrightarrow{\sim} G^{\swarrow p}$

Summary

Gross and Tucker, 1987

Francis Lazarus Graphs and Coverings

Topics in Topological Graph Theory, 2009

Francis Lazarus Graphs and Coverings

Trees, J.P. Serre, 1977 (Translation J. Stillwell)

Algebraic Topology: An Introduction, W.S. Massey, 1977 (Translation J. Stillwell)

THANK YOU!