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Quick refresher on groups

Groups. . .

Definition
Definition A group is a set with a binary operation such that

the order of successive operations does not matter (in
time, not in space),
there is a unit,
every element has an inverse.

Example
The permutation groups

Francis Lazarus Graphs and Coverings



Quick refresher on groups

Groups. . .

Definition
Definition A group is a set with a binary operation such that

the order of successive operations does not matter (in
time, not in space),
there is a unit,
every element has an inverse.

Example
The permutation groups

Francis Lazarus Graphs and Coverings



Quick refresher on groups

Groups and Morphisms

Definition
A group morphism is a structure preserving map : it commutes
with the operations.

Example

exp : (IR,+)→ (IR∗+,×)

Groups and morphisms constitute a category
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Quick refresher on groups

Subgroups

The operation of a group G induces a group structure on
the left cosets {gH}g∈G of H < G iff H is a normal
subgroup. Then, p : G� G/H, g 7→ gH and ker p = H.
Conversally, the kernel of a morphism f : G→ J is normal
and G/ ker f ' Imf .

Example

The (derived) subgroup [G,G] of commutators of G. It is the
smallest subgroup D such that G/D is commutative.
∀f : G→ H with H commutative, ∃! f̄ :

G

$$HHHHHHHHH
f // H

G/[G,G]

f̄
::vvvvvvvvv
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Quicker refresher on Categories and Functors

Categories

Eilenberg - Mac Lane, 1945

Definition
A category consists of

a class of objects,
for any two objects a,b, a set Hom(a,b) of morphisms with
an obvious associative law of composition, such that
Hom(a,a) contains an identity element.

Example
Grp,
any group G with a single object a and Hom(a,a) = G,
any preordered set with |Hom(a,b)| = 1⇔ a ≤ b,
any oriented graph with Hom(a,b) = { oriented a→ b
paths }.
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Quicker refresher on Categories and Functors

Functors

Definition
A functor F between two categories C and D consists of

A map Objects(C)→ Objects(D),
maps Hom(a,b)→ Hom(F (a),F (b)) that preserve
identities and the composition laws.

Example
by forgetting the group structure, we get: Grp→Set,
a group morphism f : G→ H induces a functor between
the corresponding categories,
Algebraic topology is mainly concerned with Top→Grp
and Top→Ab.
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Free Groups

Free Groups

Definition
The free group F (S) on a set S is defined by the universal
property : ∀f : S → G, ∃!ϕ:

S
f

��>
>>

>>
>>

>
ι // F (S)

ϕ
}}zz

zz
zz

zz

G

F (S) can be realized as the set of freely reduced words in S :
F (S) = {sε1

1 · · · s
εn
n | si ∈ S, sεi+1

i+1 6= s−εi
i }.

Example

F ({s}) ' ZZ
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Free Groups

Group Presentations

Definition
For a set S and a set R ⊂ F (S) of relators, the groups with
presentation 〈S ; R〉 is the quotient F (S)/N where N is the
normal closure or R in F (S).

〈S ; R〉 = (S ∪ S−1)∗/ ∼ with
uv ∼ uss−1v ∼ urv , ∀s ∈ S ∪ S−1,∀r ∈ R.

Example

F (S) = 〈S ; −〉,
For any group, G = 〈G ; xyz−1, z = xy〉
〈{s} ; sn〉 ' ZZ/nZZ,
〈S ; {[s, t ]}s,t∈S〉 ' ZZn.
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Graphs

What is a Graph?

Algebraic Graph Theory, Biggs, 1974/1993

Algebraic Graph Theory, Godsil and Royle, 2001
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Graphs

What Really is a Graph

Definition

A graph is a quadruple (V ,A,o,−1 ), with o : A→ V and −1 is a
fixed-point free involution of A.

Trees, Serre, 1977 (translated by Stillwell)
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Graphs

Graph Morphisms

Algebraic Graph Theory, Godsil and Royle, 2001

“There is a evident notion of morphisms for graphs”,
Trees, Serre.

Definition I

A morphism (V ,A,o,−1 )→ (W ,B,o,−1 ) is given by
f : V →W , g : A→ B with o ◦ g = f ◦ o and g◦−1 =−1 ◦g.

A non-loop edge contraction is not a morphism for Definition I.

Definition II

A morphism (V ,A,o,−1 )→ (W ,B,o,−1 ) is given by
f : V ∪ A→W ∪ B, with f (V ) ⊂W and f commutes with o and
−1.
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Graphs and Fundamental Groups

Homotopy

A loop with basepoint v in G = (V ,A,o,−1 ) is a sequence of
arcs (a1, . . . ,an) with
o(a1) = o(a−1

n ) = v and o(ai) = o(a−1
i+1).

Definition

We say that (a1, . . . ,a,a−1, . . . ,an) and (a1, . . . ,an) are
elementarily homotopic.
Homotopy is the transitive closure of elementary homotopies.

Lemma
The set of homotopy classes with basepoint v is a group for the
concatenation of paths. It is denoted π1(G, v).
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Graphs and Fundamental Groups

Homotopy

Lemma
For a bouquet Bn of n cycles: π1(Bn) ' F (n)

PROOF. Paths in Bn are words in A(Bn). Two paths are
homotopic iff they freely reduce to the same word. So,
π1(Bn) ' F (A+ (Bn)).

B4
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Graphs and Fundamental Groups

The Homotopy Functor

A morphism f : (G, v)→ (H,w) induces a group morphism
f∗ : π1(G, v)→ π1(H,w) using

(a1, . . . ,an) 7→ (f (a1), . . . , f (an))

Example
A non-loop edge contraction induces a group isomorphism:
β ∼ β′ with β = f (α) andβ′ = f (α′) =⇒ α ∼ α′.
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Graphs and Fundamental Groups

π1 of Graphs

Let T be a spanning tree of a graph G with basepoint v .

G

v
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π1 of Graphs

Let T be a spanning tree of a graph G with basepoint v .

v
T
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Graphs and Fundamental Groups

π1 of Graphs

The contraction c : G→ B induces an isomorphism.

G B
v

c

=⇒ π1(G, v) ' F (A+(B))

The edges of B are the chords of T in G.
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Graphs and Fundamental Groups
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Graphs and Fundamental Groups

π1 of Graphs

Theorem
If G is connected,

π1(G, v) ' 〈A+(G \ T ) ; −〉

rank π1(G, v) = |A+(G \ T )| = |A|
2 − |V |+ 1
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Graphs and Fundamental Groups

π1 of Graphs

Theorem
If G is connected,

π1(G, v) ' 〈A+(G \ T ) ; −〉

rank π1(G, v) = |A+(G \ T )| = |A|
2 − |V |+ 1

v
T

a

γa = T [v ,o(a)].a.T (o(a−1), v ]
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Graphs and Fundamental Groups

π1 of Graphs

Theorem
If G is connected,

π1(G, v) ' 〈A+(G \ T ) ; −〉

rank π1(G, v) = |A+(G \ T )| = |A|
2 − |V |+ 1

v

γa

π(γa) = a (in B) =⇒ π1(G, v) = 〈{γa}a∈A+(G\T ) ; −〉
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Graph Coverings

Graph Coverings

Gao et al., 1998
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Graph Coverings

Covering

Let G be a graph. For v ∈ V (G), let
Star(v) := {a ∈ A(G) | o(a) = v}.

Definition
A graph (epi)morphism p : H → G is a covering if the
restriction p : Star(w)→ Star(p(w)) is bijective for all
w ∈ V (H).
G is the base of p. For v ∈ V (G), the set p−1(v) is the
fiber above v .

p
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Graph Coverings

Unique Lift Property

Let p : H → G be a covering and let γ be a path in G.

Definition
A path δ in H with p(δ) = γ is called a lift of γ.

Lemma
Let w ∈ V (H) with p(w) = o(γ). There exists a unique lift of γ
with origin w .

pw
o(γ)
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Graph Coverings

Lift of Homotopies

Let p : H → G be a covering.

Lemma

Let α ∼ β be two homotopic paths in G. Let α̃ and β̃ be
respective lifts with the same origin. Then α̃ ∼ β̃.

PROOF. By induction on the number of elementary
homotopies separating α and β.

Corollary
p∗ is injective.

PROOF.
p∗[α] = p∗[β]⇔ p(α) ∼ p(β) =⇒ α ∼ β =⇒ [α] = [β].

Francis Lazarus Graphs and Coverings



Graph Coverings

Lift of Homotopies: Application
Lemma
F (ℵ0) < F (n) < F (2)

PROOF.

a

Remark: γ ∈ p∗π1(Flowern)⇔ |γ|a ≡ 0 mod n =⇒
p∗π1(Flowern) C π1(Flower2), i.e., F (n) C F (2). What is F (2)/F (n)?
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Graph Coverings

Subgroups and Coverings

Proposition

Let G be a connected graph. For every subgroup U < π1(G, v),
there exists a connected covering pU : (GU ,w)→ (G, v) with
pU∗π1(GU ,w) = U.

Let T be spanning tree of G and γa = T [v ,o(a)].a.T (o(a−1), v ].
Define GU ,pU by

V (GU) = V (G)× {Ug}g∈π1(G,x),
A(GU) = A(G)× {Ug}g∈π1(G,x)

o(a,Ug) = o(a) and (a,Ug)−1 = (a−1,Ug[γa]),
pU is the proj. on first component.

(o(a),Ug)•
(a,Ug) // •(o(a−1),Ug[γa])

(a−1,Ug[γa])
oo
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Graph Coverings

Subgroups and Coverings

Example

Put g := [γa], so π1(G, v) =< g >. Let U =< g2 >.

(v ,U)
pU

T

x

v

(x ,U)

(v ,Ug)

(x ,Ug)
a
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Graph Coverings

Subgroups and Coverings

pU is a covering: Star(x ,Ug) = Star(x)× {Ug}
GU is connected: For a path α = (a1, . . . ,an), put
γα = γa1 · · · γan . Observe that (v ,U).[α] = (t(α),U[γα]).
pU∗π1(GU , (v ,U)) = U:
[λ] ∈ ImpU∗ ⇔ (v ,U).[λ] = (v ,U)⇔ U[λ] = U ⇔ [λ] ∈ U
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Graph Coverings

Subgroups and Coverings

pU is a covering: Star(x ,Ug) = Star(x)× {Ug}
GU is connected: For a path α = (a1, . . . ,an), put
γα = γa1 · · · γan . Observe that (v ,U).[α] = (t(α),U[γα]).

pU

T [v , x ]
v

x

(v ,U)

(x ,U)

pU

T [v , x ]
v

x

(v ,U)

(x ,Ug)

[λ] = g

(v ,Ug)
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Graph Coverings
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Graph Coverings

Subgroups and Coverings: Examples

Definition
When U = {1}, GU is the universal cover.

we have
α ∈ p∗π1(ZZ2Grid)⇔ |α|a = |α|b = 0⇔ α ∈ [F (2),F (2)]. So,
for G = B2, G[G,G] = ZZ2Grid .
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Graph Coverings

Subgroups and Coverings: Application

Nielsen-Schreier theorem, mid 1920’s
Every subgroup of a free group is free.

PROOF. Realize F (S) as the π1 of a bouquet of |S| circles.
A subgroup of F (S) is the π1 of a covering graph, which we
know to be free.

Note: Another proof uses the fact that a group is free iff it acts
freely on a tree (Bass-Serre). Any subgroup acts obviously
freely on the same tree.
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Graph Coverings

Covering Morphisms

Definition
A morphism f between coverings p : H → G and q : K → G

sends fibers to fibers. It satisfies:
H

p

��@
@@

@@
@@

f // K
q

��~~
~~

~~
~

G
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Graph Coverings

Covering Morphisms
Lemma
There is a morphism f between coverings p : (H, v)→ (G,u)
and q : (K ,w)→ (G,u) iff p∗π1(H, v) < q∗π1(K ,w) in π1(G,u).

PROOF. For x ∈ V (H), γ : v  x , set f (x) = w .p∗[γ].
If λ : v  x then w .p∗[λ] = w .p∗[λ.γ−1].p∗[γ] = w .p∗[γ]

p

u

v
w

x f (x)

q

a f (a)
H

K

G

We have q ◦ f = p: q(f (x)) = q(w .p∗[γ]) = t(p(γ)) = p(x).
We also check that f commutes with o and −1.

Corollary
There is an isomorphism f between coverings p : H → G and
q : K → G iff p∗π1(H, v) and q∗π1(K ,w) are in the same
conjugacy class in π1(G,u) for p(v) = q(w) = u.

Lemma
A morphism between coverings is a covering.

PROOF. Since restrictions of p and q to stars are
one-to-one and since q ◦ f = p it must be the case for f .
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Graph Coverings
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Lemma
A morphism between coverings is a covering.

PROOF. Since restrictions of p and q to stars are
one-to-one and since q ◦ f = p it must be the case for f .
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Graph Coverings
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Graph Coverings

The Set of Coverings

Theorem
The set of coverings of a graph G, up to isomorphism,
corresponds to the set of conjugacy classes of subgroups of
π1(G) with the preorder relation H ≥ K if ∃g ∈ π1(G) with
g−1Hg ⊂ K .

The universal covering is the maximal element.
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Actions and Quotients

Actions and Quotient Graphs

Jenn3D, F. Obermeyer
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Actions and Quotients

Quotient Graphs

Definition
Let Γ < Aut(G) acts without (arc) inversion. The quotient graph
G/Γ is given by

V (G/Γ) = {Γ · v}v∈V (G),
A(G/Γ) = {Γ · a}a∈A(G),

o(Γ · a) = Γ · o(a) and (Γ · a)−1 = Γ · a−1

Note: Γ acts without inversion⇔ (Γ · a)−1 6= Γ · a
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Actions and Quotients

Free Actions

Definition
Γ < Aut(G) acts freely if it acts without inversion and
g ∈ Γ \ {1} does not fix any vertex.

Proposition

If Γ acts without inversion then pΓ : G→ G/Γ is an
epimorphism. It is a covering iff Γ acts freely on G.

PROOF. pΓ restricted to Stars must be injective. Let g 6= Id
fix a vertex. Then ∃a ∈ A(G) : a 6= g(a) and o(a) = o(g(a)).

a

g(a)

Γ · a

pΓ
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Actions and Quotients

Free Actions

Definition
Γ < Aut(G) acts freely if it acts without inversion and
g ∈ Γ \ {1} does not fix any vertex.

Proposition

If Γ acts without inversion then pΓ : G→ G/Γ is an
epimorphism. It is a covering iff Γ acts freely on G.

PROOF. pΓ restricted to Stars must be injective. Let g 6= Id
fix a vertex. Then ∃a ∈ A(G) : a 6= g(a) and o(a) = o(g(a)).

a

g(a)

Γ · a

pΓ
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Actions and Quotients

Free Actions

Lemma I
If Γ acts freely on G then (pΓ)∗π1(G, v) C π1(G/Γ, Γ · v)

PROOF. pΓ(v .β) = pΓ(v) =⇒ ∃g ∈ Γ : g(v) = v .β. So,
v .(βpΓ(α)β−1) = g(v).(pΓ(α)β−1) = (g(v).pΓ(α))β−1 =
g(v).β−1 = v .

v Γ · v
pΓ

α pΓ(α)
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Actions and Quotients

Free Actions

Lemma I
If Γ acts freely on G then (pΓ)∗π1(G, v) C π1(G/Γ, Γ · v)

PROOF. pΓ(v .β) = pΓ(v) =⇒ ∃g ∈ Γ : g(v) = v .β. So,
v .(βpΓ(α)β−1) = g(v).(pΓ(α)β−1) = (g(v).pΓ(α))β−1 =
g(v).β−1 = v .

v Γ · v
pΓ

α pΓ(α)

ββ̃

g(α)

g(v)
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Actions and Quotients

Action of the Covering Automorphisms

Definition
A p-(auto)morphism of a covering p : H → G satisfies:

H
p

��@
@@

@@
@@

f // H
p

��~~
~~

~~
~

G
Aut(p) := set of p-automorphisms.

Lemma
Aut(p) acts freely on H.

Let f ∈ Aut(p). f (a) = a−1 =⇒ p(a) = p(a−1) = p(a)−1,
contradiction.
f (v) = v =⇒ ∀α : v  x , f (x) = f (v).p(α) = v .p(α) = x .
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Actions and Quotients

Quotients and Coverings
Lemma II
If Γ acts freely on G then Aut(pΓ) = Γ.

PROOF. Obviously, Γ ⊂ Aut(pΓ) and Γ acts transitively on
the fibers of pΓ. Since Aut(pΓ) acts freely, Aut(pΓ) ⊂ Γ.

Lemma III
If p : (H, v)→ (G,u) is a covering with p∗π1(H, v) C π1(G,u)
then Aut(p) acts transitively on fibers.

PROOF. p(w) = p(v) =⇒ p∗π1(H,w) = p∗π1(H, v).
We construct f ∈ Aut(p) such that f (v) = w : If α : v  x set
f (x) = w .[p(α)]. If β : v  x then
w .[p(β)] = w .[p(βα−1)][p(α)] = w .[p(α)].
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Actions and Quotients

Quotients and Coverings
Lemma II
If Γ acts freely on G then Aut(pΓ) = Γ.

Lemma III
If p : (H, v)→ (G,u) is a covering with p∗π1(H, v) C π1(G,u)
then Aut(p) acts transitively on fibers.

PROOF. p(w) = p(v) =⇒ p∗π1(H,w) = p∗π1(H, v).
We construct f ∈ Aut(p) such that f (v) = w : If α : v  x set
f (x) = w .[p(α)]. If β : v  x then
w .[p(β)] = w .[p(βα−1)][p(α)] = w .[p(α)].

p

vw

xf (x)

af (a)

u

G
H
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Actions and Quotients

Quotients and Coverings

Proposition

Let p : H → G. If Γ < Aut(H) then
HpΓ

�����
p
��?

??

H/Γ
' // G

iff

1 Γ = Aut(p)

2 p∗π1(H, v) C π1(G,p(v))

PROOF. =⇒ :
1 pΓ covering =⇒ Γ acts freely =⇒ Γ = Aut(pΓ) = Aut(p)

by lemma II.
2 By lemma I, we also have pΓ∗π1(H, v) C π1(H/Γ,pΓ(v))

whence p∗π1(H, v) C π1(G,p(v)).
⇐=: In that case Aut(p) acts transitively by Lemma III, so
H/Aut(p) ' G.
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Actions and Quotients

Galois Coverings

Definition
A covering as above is said Galois or regular or normal.

Theorem
If p : H → G is a covering then
Aut(p) ' N (p∗π1(H, v)) /p∗π1(H, v).
If p is Galois Aut(p) ' π1(G,p(v))/p∗π1(H, v).
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Actions and Quotients

Galois Coverings

Definition
A covering as above is said Galois or regular or normal.

Theorem
If p : H → G is a covering then
Aut(p) ' N (p∗π1(H, v)) /p∗π1(H, v).
If p is Galois Aut(p) ' π1(G,p(v))/p∗π1(H, v).

Example
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Actions and Quotients

Galois Coverings

Definition
A covering as above is said Galois or regular or normal.

Theorem
If p : H → G is a covering then
Aut(p) ' N (p∗π1(H, v)) /p∗π1(H, v).
If p is Galois Aut(p) ' π1(G,p(v))/p∗π1(H, v).

PROOF. Aut(p)
F→ p−1(v), f 7→ f (v). Put fw := F−1(w), i.e.

fw (v) = w . Let π1(G,p(v))
M→ Aut(p), α 7→ fv .α.

M is a morphism: M(αβ)(v) = fv .αβ(v) = v .αβ = (v .α).β =
fv .α(v).β = fv .α(v .β) = fv .α ◦ fv .β(v). So,
M(αβ) = fv .α ◦ fv .β = M(α) ◦M(β).
ker M = {α | v .α = v} = p∗π1(H, v).

Francis Lazarus Graphs and Coverings



Voltage Graphs

Voltage Graphs

Gross and Tucker, 1987
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Voltage Graphs

Voltage Graphs, Gross 1974

Definition
A voltage on a graph G with values in group B is a map
κ : A(G)→ B with

κ(a−1) = κ(a)−1, ∀a ∈ A(G)

If B acts on the right on the set S, the voltage induces a
covering pκ : Gκ → G where

V (Gκ) = V (G)× S and A(Gκ) = A(G)× S, and
o(a, s) := (o(a), s) and (a, s)−1 := (a−1, s.κ(a))

(o(a), s)•
(a,s) // •(o(a−1), s.κ(a))

(a−1,s.κ(a))
oo
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Voltage Graphs

Voltage Graphs and Coverings

Lemma
Every covering p : H → G is (' to) the covering induced by a
voltage on G.

PROOF. Let T be a spanning tree of (G, v). Define
κ : A(G)→ π1(G, v) by κ(a) = γa = T [v ,o(a)].a.T [o(a−1), v ]
with π1(G, v) acting on the fiber p−1(v).

Check that Gκ
' //

pκ
��?

??
H

p����
�

G
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Voltage Graphs

Voltage Graphs and Coverings

Proposition

A voltage κ : A(G)→ B with B acting on itself and B =< Imκ >
induces a Galois covering.

PROOF. Note that for α ∈ π1(G, v), (v ,1B).α = (v , κ(α)), so
that for the induced morphism κ : π1(G, v)→ B we have
kerκ = pκ∗π1(Gκ, (v ,1B)).

Proposition
Conversely, a Galois covering p : H → G is induced by a
voltage κ : A(G)→ B with B acting on itself.

PROOF. Let T be a spanning tree of G. For every a ∈ A(G)
there is a unique fa ∈ Aut(p) with fa(v) = v .γa. We let
B = Aut(p) and κ(a) = fa.

Check that Gκ
' //

pκ
��?

??
H

p����
�

G

Francis Lazarus Graphs and Coverings



Voltage Graphs

Voltage Graphs and Coverings

Proposition

A voltage κ : A(G)→ B with B acting on itself and B =< Imκ >
induces a Galois covering.

Proposition
Conversely, a Galois covering p : H → G is induced by a
voltage κ : A(G)→ B with B acting on itself.

PROOF. Let T be a spanning tree of G. For every a ∈ A(G)
there is a unique fa ∈ Aut(p) with fa(v) = v .γa. We let
B = Aut(p) and κ(a) = fa.

Check that Gκ
' //

pκ
��?

??
H

p����
�

G
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Voltage Graphs

Summary

Coverings
or

voltage graphs
Quotient
graphs

Non-free
actions

Galois coverings

Auto-acting voltages

Free actions

Non-Galois
coverings
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Voltage Graphs
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Voltage Graphs
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Voltage Graphs
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Voltage Graphs
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Voltage Graphs

THANK YOU!
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