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On the homotopy test on surfaces with boundaries

Julien Rivaud∗ Francis Lazarus†

Abstract

Let G be a graph cellularly embedded in a surface S
orientable or not, and with nonempty boundary. Given
two closed walks c and d in G, we describe linear time
algorithms to decide if c and d are homotopic in S,
either freely or with fixed basepoint. After O(|G|) time
preprocessing independent of c and d, our algorithms
answer the homotopy test in O(|c| + |d|) time, where
|G|, |c| and |d| are the respective numbers of edges of
G, c and d.

1 Introduction

Computational topology of surfaces has received much
attention in the last two decades. Among the notable
results we may mention the test of homotopy between
two cycles on a surface [2], the computation of a short-
est cycle homotopic to a given cycle [1], or the compu-
tation of optimal homotopy and homology bases [3].
In their 1999 paper, Dey and Guha announced a lin-
ear time algorithm for testing whether two curves are
freely homotopic on a triangulated surface without
boundary. In [4] we showed that their method is inval-
idated by subtle flaws and provided a new geometric
approach that confirms the linear time bound on the
free homotopy test. This technique can be extended
to handle surfaces with boundaries by gluing a punc-
tured torus to each boundary cycle. We nevertheless
present a much simpler and self-contained method for
surfaces with nonempty boundary which also answers
the free homotopy test on non-orientable surfaces with
boundary.

Let G be a graph cellularly embedded in a surface S
with at least one boundary. Each face of G in S is thus
a disk or an annulus. By extending its boundaries we
can retract S onto a subgraph G′ of G. Each homotopy
class in G′ has a canonical reduced representation
obtained by removing spurs. To know whether two
cycles of G are homotopic in S it is thus sufficient to
compute their deformation retract on G′, remove spurs
until they are reduced and check them for equality
(up to circular permutation).

An edge e of G does not necessarily retract on a
single edge of G′ but rather on a subwalk we of a
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boundary cycle of G′ — that is a facial cycle of its
embedding in S. To achieve the claimed time bound
we do not expand we down to edges of G′ but keep it
under the following abstract representation: a reference
to a boundary walk along with start and end indices.
In O(|G|) total time we can compute for all e ∈ G
the abstract subwalk which e retracts on. Retracting
a cycle c of G then yields a sequence of such subwalks.
The removal of a spur in the underlying expanded cycle
can be expressed as an operation on these subwalks.
These operations define a rewriting system that we
run on the sequence of subwalks until its underlying
cycle is reduced. This takes linear time in the initial
number of subwalks, that is O(|c|) time.

The contractibility test easily reduces to the (free)
homotopy test and we only consider this last test in
this abstract. Given two cycles c and d in G, we first
compute two reduced sequences s and t of abstract
subwalks whose underlying cycles c′ and d′ are freely
homotopic to c and d respectively. Even if c′ and d′

are cyclically equal, the sequences s and t may not be
literal permutations of each other. If σ is a sequence
of subwalks whose underlying reduced cycle is u, we
define its canonical (cyclic) sequence Can(σ) =
Can(u) that only depends on u. We can now decide
if c and d are homotopic by comparing Can(s) and
Can(t) up to circular permutation of their subwalks.
Since we can compute Can(s) and Can(t) in time
proportional to their number of subwalks, we obtain:

Theorem 1 (Homotopy test) Let G be a graph
cellularly embedded in a surface S with at least one
boundary. Let c and d be two cycles with a total of
k edges in G. After a O(|G|) time preprocessing of G,
independent of c and d, we can decide if c and d are
freely homotopic in O(k) time.

2 Background

We provide some definitions and properties; see [5]
or [6, chapter 3] for details on rotation systems.

Cellular embedding of graphs A graph is cellularly
embedded in a surface S without boundary if every
open face of its embedding is a disk. A cellular em-
bedding can be encoded by a rotation system, that
is a set of half-edges with two unary operations: an
involution exchanging the direction on edges, and a
cyclic permutation around vertices. Each (half)-edge is
associated a signature ∈ {−1, 1} indicating whether
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the orientation of the cyclic permutation is the same
or not around its endpoints. The face traversal proce-
dure described in [6] allows to traverse all the facial
cycles in O(|G|) time. In particular, we can determine
whether each edge of G is incident to only one facial
cycle or to two distinct facial cycles.

Surfaces with boundaries In order to handle surfaces
with boundaries we allow every face of G in S to be
either a disk or an annulus. In other words G is a
cellular embedding in the closure Ŝ of S obtained by
attaching a disk to every boundary of S. We record
this information by storing a boolean for every facial
cycle of G indicating whether the associated face is
perforated or not. Assume that an edge e is incident to
a perforated face f and a plain face f ′. We can perform
an elementary collapse of f ′ through its free edge e,
thus extending the perforation in f . Equivalently, we
can remove e from G and merge f and f ′ into a single
(perforated) face. We obtain this way an embedding of
G − e into S that simulates a deformation retraction
of S without actually modifying S.

Homotopy in embedded graphs We consider homo-
topy of closed walks in G with respect to S. Hence two
cycles of G are homotopic if one can be continuously
transformed to the other on S. If all the facial cycles
are tagged as boundaries, then S is deform retracts
onto G and homotopy on S reduces to homotopy on G.
In particular, every cycle of G has a canonical homo-
topic cycle obtained by removing spurs until the cycle
is reduced. As usual, a spur is the concatenation of
two opposite oriented edges and a cycle is reduced if
it contains no spur.

3 Retracting S to a thick graph

We first reduce the number of vertices of G:

Lemma 2 Let G be a graph embedded on a surface S.
We can contract the edges of a spanning tree of G in
O(|G|) time. We obtain this way a graph G1 embedded
on S with a single vertex, fewer edges than G and as
many faces. Cycles in G are homotopic if and only if
their contractions in G1 are homotopic.

Proof. We assume that every edge of G points to its
incident faces. Updating and contracting each edge
of the spanning tree can be done in constant time
per edge by updating the rotation system: no face
disappears or changes of boundary status. Comput-
ing and contracting a spanning tree of G thus takes
O(|G|) time and produces an embedded graph G1. �

A retraction of S From now on we suppose that G has
a single vertex. Let us call an edge free if it is incident
to two distinct faces, exactly one of which is perforated.
We will simulate a sequence of elementary collapses in
order to retract S onto a subgraph G′ of G. We will

thus obtain an embedding of G′ into S such that all
faces are perforated. To this end we maintain a list L
of free edges. We start by putting all the free edges of
G into L. We then pick an edge e ∈ L and simulate
the collapse of its plain incident face by removing e
from G and merging its two incident faces. In practice,
we just mark e as a merging edge and tag e as well as
its plain incident face f with the name of the incident
perforated face. We next update L, removing e from L
and adding in or removing from L the other edges of f
according to the new status of their incident faces. We
repeat this procedure until L is empty. This ensures
that all the faces are perforated since otherwise the
connectivity of S would imply the existence of a free
edge. Note that the handling of a free edge always
involves an incident plain face that was not merged
before. It easily follows that the complexity of the
whole retraction is bounded, up to a multiplicative
constant, by the sum of the lengths of the facial cycles,
hence to |G|.

We call G′ the resulting embedded graph, i.e., the
graph G minus the merging edges. If b is a facial cycle
of G′ of length |b| and i ∈ Z/|b|Z we denote by b[i]

the (i + 1)-th edge of b. An abstract subwalk of b
— or just subwalk when there is no ambiguity — is
a triplet (i, j)b where i, j ∈ Z/|b|Z. The underlying
path of (i, j)b is the path b[i]b[i+1] · · · b[j]. Call Eb the
set of merging edges tagged with the facial cycle b.
Those edges are incident to a tree Tb of faces (also
tagged with b) of G whose union is bounded by b
and only one among those faces is perforated. Any
e ∈ Eb cuts b into two subpaths bp, be such that the
concatenation bp · e surrounds the perforated face.
Clearly, e retracts onto be. We can express be as an
abstract subwalk we of b as follows. When the merging
edge e is removed during the retraction phase we keep
two pointers from e to the previous and next edge
in the incident plain face f to be collapsed. Those
pointers delimitate the complementary subpath of f
onto which e retracts. We can differentiate a start and
an end between those pointers by taking into account
the orientation of the incident perforated face and
the signature of e. At the end of the whole retraction
we can obtain we by following the start and end

pointers respectively, until we hit a non-free edge. We
summarize the discussion into the following

Proposition 3 Let G be a graph embedded on a
surface S with at least one boundary. In O(|G|) time
we can compute:

• a subgraph G′ of G on which S retracts,

• a set B of boundary cycles, one per boundary
cycle of G′,

• for each oriented edge e ∈ G, an abstract sub-
walk (i, j)b whose underlying path is the defor-
mation retract of e onto G′, where b ∈ B ∪ B−1.



191

EuroCG 2012, Assisi, Italy, March 19–21, 2012

4 Reducing a sequence of subwalks

The length |a| of an (abstract) subwalk a is the length
of its underlying path. The underlying cycle of a
sequence of subwalks is the cycle obtained by concate-
nation of the individual underlying paths. A sequence
of subwalks is reduced if its underlying cycle is.

Our goal is to cyclically search and remove spurs,
preserving the free homotopy class. We express these
simplifications with the following set of rules: for all
(i, j)b and (k, l)d such that b[j] = d[k]

−1:

(i, j)b · (k, l)d −→














ǫ if i = j and k = l
(i, j − 1)b if i 6= j and k = l
(k + 1, l)d if i = j and k 6= l
(i, j − 1)b · (k + 1, l)d otherwise

(1)

The following lemma ensures the correctness of our
simulation:

Lemma 4 Let s be a sequence of subwalks. If s is not
reduced then there exist two cyclically consecutive
subwalks in s on which one of the above rules apply.

Proof. Since G′ has only one vertex no boundary
cycle can contain a spur. �

Running the rewriting system until no rule can cycli-
cally apply gives us a new sequence of subwalks whose
underlying loop is cyclically reduced and remains in
the same free homotopy class. To better control the
number of rewrites needed to reach a reduced sequence,
we add a special case to the previous rule set:

(i, j)b · (−j − 1, l)b−1 −→










ǫ if |(i, j)b| = |(−j − 1, l)b−1 |

(i, l − 1)b if |(i, j)b| > |(−j − 1, l)b−1 |

(i + 1, l)b−1 if |(i, j)b| < |(−j − 1, l)b−1 |

(2)

These new rules recognize right away when the second
subwalk undoes a whole chunk of the first along the
same boundary cycle, and compute in a single step
the result of removing spurs until only one subwalk
remains. In particular lemma 4 stays true. Rules of this
second type take precedence over the rules of set (1);
if both types apply then we use a rule of set (2).

Lemma 5 A path of length 2 in G′ appears at most
once as a subwalk of boundary cycles.

Proof. If y follows an oriented edge x in both facial
walks containing x, then ρ is an involution around
the common vertex v of x and y; in particular v has
degree 2. Because G′ has only one vertex, G′ is a single
loop; but then boundary cycles have length 1. �

Lemma 6 Let s1s2 be a sequence of two subwalks
on which some rule apply. Let s′ be the resulting
sequence, with precedence taken into account. Then
no rule apply on s′.

Proof. If s′ has height 1, no rule can apply. Otherwise
a rule of set (1) was used and s′ = (i, j − 1)b·(k + 1, l)d

where s1 = (i, j)b and s2 = (k, l)d. In particular b[j] =
d[k]

−1. If a rule of set (2) applies on s′, then d = b−1

and k + 1 = −(j − 1) − 1. If a rule of type (1) applies
on s′, then b[j−1] = d[k+1]

−1 = (d−1)[−k−2] and the
subpath b[j−1]b[j] appears both in b at position j − 1
and in d−1 at position −k−2. Using lemma 5 we again
get b = d−1 and k = −j − 1. This cannot be because
no rule of type (2) applied on s. �

Lemma 7 Suppose no rule apply on the sequence
s1s2. Let s0 (resp. s3) be a subwalk such that some rule
apply on s0s1 (resp. s2s3), yielding with precedence a
sequence of two subwalks s′

0s′
1 (resp. s′

2s′
3). Then no

rule apply on s′
1s2 (resp. s1s′

2).

Proof. The conditions on s′
1s2 (resp. s1s′

2) are exactly
the same as on s1s2. �

The height of a sequence of subwalks s is the
number h(s) of subwalks composing it. The inertia
of s = s1 · · · sh, denoted i(s), is the maximum k ≤ h
such that for all 1 ≤ i ≤ k, sisi+1 triggers no rule.1

If i(s) = h(s) then s is cyclically inert.

Lemma 8 Let s = s1 · · · sh be a sequence of subwalks
of inertia i < h. Let r be the result of the rules applied
on si+1si+2. If i < h − 1 let s′ = s1 · · · si · r · si+3 · · · sh

else let s′ = s2 · · · sh−1 ·r. Then 3h(s′)−i(s′) < 3h(s)−
i(s).

Proof. We first suppose i < h − 1. If h(s′) = h(s)
then h(r) = 2; lemmas 6 and 7 ensure i(s′) ≥ i(s) + 1.
Else h(s′) ≤ h(s)−1 and of course i(s′) ≥ i(s)−1. We
now handle the case i = h − 1. We always have i(s′) ≥
i(s) − 2; if h(s′) < h(s) the result follows. Otherwise
r = r1r2. By lemma 6 r1r2 triggers no rule, and neither
do sh+1r1 nor r2s2 by lemma 7. Hence i(s′) = h. �

A direct consequence is:

Proposition 9 Given a sequence s of subwalks we
can compute in O(h(s)) time a cyclically inert se-
quence s′ of subwalks whose underlying cycle is freely
homotopic to that of s. In particular s′ is reduced.

5 The free homotopy

Let c and d be two cycles on S. Using propositions
3 and 9 we get two sequences s and t of subwalks
whose underlying loops c′ and d′ are freely homotopic
to c and d respectively. In particular c and d are freely
homotopic if and only if c′ ≡ d′ up to cyclic permuta-
tion. Explicitly comparing the underlying loops is too
costly. We thus define a canonical representation of any
reduced cycle as a sequence of subwalks, and show how
to derive this canonical representation from s and t.

1By convention sh+1 = s1.
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A boundary mapping of an edge e ∈ G′ is any
pair (b, i) where b ∈ B ∪ B−1 and i ∈ Z/|b|Z such
that b[i] = e. Every e ∈ G′ has exactly two bound-
ary mappings. We choose an arbitrary total order
on B ∪B−1. We define as follows the canonical map-
ping CM(c, e) of e ∈ c with respect to a reduced
cycle c. Let p and n be the edges respectively pre-
ceding and following e in c. If en is a subpath of
some boundary cycle then by lemma 5 there is a
unique pair (b, i) such that en occurs at position i
in b and we set CM(c, e) = (b, i). Else, if pe is a sub-
path of some boundary cycle then CM(c, e) is the
unique (b, i) such that pe occurs at position i − 1 in b.
Otherwise let CM(c, e) be the mapping of e with mini-
mal b ∈ B ∪B−1. Two consecutive edges e1 and e2 of c
are said to agree with each other if CM(c, e1) = (b, i)
and CM(c, e2) = (b, i + 1). Let c be a reduced cycle
and p = e1 · · · ek ⊂ c a subpath of agreeing edges.
Let (b, i) = CM(c, e1) and k = |b| q + r the Euclidean
division of k by |b|. The leftmost sequence of p is
[(i, i − 1)b]q if r = 0 and [(i, i − 1)b]q · (i, i + r − 1)b

otherwise. If c is not the power of a boundary cycle
then there is a unique decomposition c = p1 · · · ph

into maximal subpaths of agreeing edges, that is
where the last edge of pi does not agree with the first
edge of pi+1. The canonical sequence of c is then
the concatenation Can(c) of the leftmost sequences
of p1, . . . , ph. If c is the q-th power of a boundary cycle
then Can(c) = [(0, −1)b]q is the leftmost sequence of
the subpath of c following q times the corresponding
boundary walk b. By definition Can(c) is unique up
to circular permutation.

Lemma 10 Two reduced cycles c and d are equal if
and only if Can(c) and Can(d) are circular permuta-
tions of each other.

If s is a sequence of subwalks with underlying cycle c
then a subwalk (i, j)b ∈ s of underlying path x ⊂ c is
admissible if the l-th edge xi of x has CM(c, wl) =
(b, i + l − 1). In particular, xl agrees with xl+1. A
sequence of subwalks is admissible if all its abstract
subwalks are. Of course Can(c) is admissible.

Lemma 11 Let s is a sequence of subwalks with un-
derlying cycle c. Let w = (i, j)b ∈ s with i 6= j. Then
w = (i, j − 1)b · (j, j)b where (i, j − 1)b is admissible.

Two consecutive subwalks (i, j)b and (i′, j′)b′ in
an admissible sequence agree with each other if
(b′, i′) = (b, j+1) — in other words the last edge under-
lying (i, j)b agrees with the first underlying (i′, j′)b′ .

Lemma 12 Let s is a sequence of subwalks with un-
derlying cycle c. If s1 · · · sh ⊂ s is a sequence of agree-
ing subwalks of s then we can compute in O(h) time
the corresponding leftmost sequence.

Proof. Compute |s1|+ · · ·+ |sh| and divide by |b| �

Proposition 13 Given a reduced sequence s of sub-
walks with underlying cycle c, we can compute Can(c)
in O(|s|) time.

Proof. By computing a single canonical mapping we
can replace any subwalk of length 1 by an admissi-
ble one. Together with lemma 11 this ensures we can
compute an admissible sequence s′ = s′

1 · · · s′
h with

underlying cycle c such that h ≤ 2 |s|. We then search
for some k such that sk disagrees with sk+1. If there is
none then c is the power of a boundary cycle b: return
Can(c) = [(0, −1)b]q where q = |c|

|b| = O(|s|). Other-
wise, cut s′ into subsequences of agreeing subwalks,
computing with lemma 12 and concatenating their
respective leftmost sequences . �

Now we can prove theorem 1:

Proof. Use propositions 3, 9 and 13 to compute in
O(h) time the canonical sequences of two reduced
cycles c′ and d′ freely homotopic to c and d respec-
tively. c and d are freely homotopic if and only if
c′ and d′ are, which happens if and only if c′ and d′

are equal as cycles of G′, or equivalently if and only if
Can(c′) and Can(d′) are cyclic permutations of each
other. That last test can be answered in O(h) time
with a Knuth-Morris-Pratt string search of Can(c′)
in Can(d′)Can(d′), with the added condition that
h(Can(c′)) = h(Can(d′)). Taking the initial prepro-
cessing into account we have the claimed result. �
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