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ABSTRACT:

The Virtual Reality Modeling Language (VRML) is rapidly becoming the standard file format for
transmitting 3D virtual worlds across the Internet. Static and dynamic descriptions of 3D objects,
multimedia content, and a variety of hyperlinks can be represented in VRML files. Both VRML
browsers and authoring tools for the creation of VRML files are widely available for several different
platforms.

Visually interesting VRML files tend to be large. In this paper we describe our proposal for the
VRML Compressed Binary Format. Our proposal significantly reduces file sizes and, subsequently,
the time required for transmission across the Internet. Compression ratios of up to 50:1 or more
are achieved for large models. The format combines a binary encoding with topologically-assisted
compression algorithms to create compact, rapidly-parsable VRML files. The format is currently
being evaluated by the Compressed Binary Format Working Group of the VRML Consortium for
possible inclusion into the VRML Standard.

The compression scheme represents a polyhedron using two interlocking trees: a spanning tree of
vertices and a spanning tree of triangles. The connectivity information represented in other compact
schemes, such as triangular strips and generalized triangular meshes, can be directly derived from this
representation. Connectivity information for large models is compressed with storage requirements
approaching one bit per triangle. an average of roughly two bits per triangle. A variable length,
optionally lossy compression technique is used for vertex positions, normals, colors, and texture
coordinates. The format supports all VRML property binding conventions.

CR Categories and Subject Descriptors:
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling - curve, surface, solid,
and object representations;

General Terms:
Compression, Algorithms, Graphics.



Figure 1: This model contains 86,939 vertices, 173,578 triangles, 1 connected component, and no
properties. In the standard ascii VRML format it requires 8,946,259 bytes of storage. Using 11 bits
per coordinate, the file in compressed binary format occupies 214,148 bytes for a compression ratio
of 41.72. 65,571 bytes are used for connectivity (3.02 bits per triangle) and 148,590 bytes are used
for coordinates (6.84 bits per triangle). The remaining bytes are used to represent the scene graph
structure of the VRML file. The edges of the vertex spanning tree, composed of 10,499 runs, are
shown as black lines. The triangle spanning tree is composed of 18,399 runs. Leaf triangles are shown
in red, regular triangles in yellow, and branching triangles in blue.

1. Introduction

In recent years there has been a rapid growth in the exploitation of the Internet to serve text
(HTML) and image (JPG,GIF,PNG) content to client browsers. With faster communication links
and improving PC graphics there has been an increasing interest in delivering 3D content. VRML
is the emerging standard for the delivery of 3D content in a networked environment. However, the
bandwidth requirements for 3D content are significant and have served as a detriment to the wide
acceptance of network-delivered 3D graphics. In this article we address the reduction of the bandwidth
requirements through the use of topologically-assisted compression.

Figure 1 details the results of applying topologically-assisted compression to a VRML ascii model.
For this example, the file is reduced in size by a factor of 41.72 with virtually no loss in visual quality.

We start by providing a brief overview of VRML. We then examine related work, concentrating on
the topologically-assisted compression algorithms of Taubin and Rossignac [9]. Next we show how
we have adapted topologically-assisted compression techniques to create our proposal for the VRML
Compressed Binary Format. We then apply the compressed binary format to over 600 VRML models
and examine the results. Finally, we draw some conclusions and address future work.

2. The Virtual Reality Modeling Language

The Virtual Reality Modeling Language (VRML) [3], sometimes pronounced verml, is a format
for describing and transmitting 3D objects and worlds composed of geometry and multimedia in a
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#VRML V2.0 utf8
Shape {
appearance Appearance {
material Material {
ambientIntensity 0.5
diffuseColor 0.1837 0.1837 0.1837

}
}
geometry IndexedFaceSet {
coord Coordinate {
point [

0.94 0.00 -0.33 ,
-0.47 0.81 -0.33 ,
-0.47 -0.81 -0.33 ,
0.00 0.00 1.00 ,

]
}
coordIndex [

2, 1, 0, -1,
3, 2, 0, -1,
1, 3, 0, -1,
2, 3, 1, -1,

]
color Color {
color [
1.00 0.62 0.00,
1.00 0.00 0.00,
0.87 0.00 0.87,
0.37 0.37 1.00,

]
}
colorPerVertex FALSE
colorIndex [ 0 1 2 3 ]

}
}

Figure 2: A simple VRML file.

network environment. VRML targets web applications such as: computer-aided design; engineering
and scientific visualization, multimedia products, entertainment and educational offerings, and shared
virtual worlds. A small VRML file is shown in figure 2. VRML has several features which make it
particularly attractive for authoring virtual worlds. These features include:

� Scene graph
� Event processing
� Behaviors
� Encapsulation and re-use
� Distributed content
� Extensibility
� Interactivity
� Animation

Scene graph. The basic building block for VRML is the node. Nodes have fields, fields serve as
attributes and define the persistent state of the node. There are 54 different types of nodes which can be
partitioned into three classes: Grouping nodes, Children nodes, and, Attribute nodes. Grouping nodes
contain, as an attribute, child nodes. Grouping nodes may contain other Grouping nodes. Grouping
nodes may also contain children nodes. These parent relationships define a directed acyclic graph
of attributed nodes known as the scene graph. The leaf nodes in a scene graph. are called Children
nodes. A Grouping node defines a coordinate system for its child nodes relative to its parent coordinate
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system. The parent relationship provides a sequence of transformations which, when concatenated,
positions children nodes in the file’s world coordinate space. Attribute nodes serve as attributes for
other nodes. So, for example, a Material attribute node can be associated to the appearance field of
the Shape child node.

Event processing. Nodes can both receive from and send messages to other nodes. These messages
are called events. Input events typically alter the state of a receiving node and may trigger behavior.
Output events reflect a change in the state of the transmitting node. Events are frequently associated to
the setting and changing of a node’s fields. The connection between a receiving node and a transmitting
node is called a route. Routes are not nodes. However, like nodes, they are defined in the VRML file.

Behavior. An author may wish to have his virtual world respond to user input using custom logic.
For example, if the user selects the door and the door is not open then open the door. In VRML, this
type of custom logic is supported using a special node known as a Script node. The Script node is
special in that a user may augment it by defining additional events and fields. The URL (Uniform
Resource Locator) field of the Script node contains program logic. The program logic defines the
behavior of the script node. This arrangement permits the script node to send events, receive events,
and alter state using customized behavior.

Encapsulation and re-use. VRML supports the definition of new node types, called prototypes,
in terms of existing node types. Existing node types may be either built-in or previously defined
prototypes. The combination of prototypes and Script nodes provide a powerful mechanism to
encapsulate content and behavior in a re-usable entity.

Distributed content. One of the key features of VRML is its support of the World Wide Web.
VRML has several nodes which use URLs to connect the scenegraph to the network. These nodes
include:

� fetch on demand of additional VRML content (Inline node)
� hyperlinks to other URLs (Anchor node)
� fetch on demand of audio content in uncompressed PCM (wavefile) format or MIDI file type 1

sound format (AudioClip node)
� fetch on demand of texture content in JPEG or PNG, with optional support of CGM and GIF

(ImageTexture node)
� fetch on demand of video content in MPEG1-Systems (audio and video) and MPEG1-Video

(video-only) movie file formats (VideoTexture node)

The Inline node is particularly powerful in a networked environment since it permits authors to
create worlds composed of multiple VRML worlds which may themselves be composed of multiple
VRML worlds. For example, a VRML file of a car, lets call it car.wrl, may be composed of several
other VRML files, for example engine.wrl and door.wrl. The file car.wrl establishes the coordinate
system and a hierarchal grouping of its component parts. The included files may also include other
files. For example engine.wrl might inline piston.wrl. Of course, an intelligent browser processing
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car.wrl would fetch piston.wrl only if it was required for rendering. Figure 3 sketches the flow of
information in a network environment while processing a VRML file.

Inline VRML

Behavior (java,..)

Video (mpeg)

Texture (jpeg,...)

Sound (pcm,...)

VRML

World Wide Web

Browser

Input to sensor
node

Viewpoint
manipulation

route

scene graph

Figure 3: Flow of information while processing a VRML file.

Extensibility. In addition to enabling encapsulation and re-use, the previously mentioned VRML
prototype mechanism also enables authors to extend the language by introducing, what are essentially,
new nodes. VRML also supports external prototypes. External prototypes function much like a regular
prototype, except instead of residing in the current file they reside in another URL-identified VRML
file. This feature allows developers to extend VRML with logic and content residing and possibly
evolving at a specific URL. For example, an author could create an external prototype, let’s call it
NurbSurface, to model NURB surfaces. NurbSurface would define fields for the necessary parameters
and contain a script node with a URL reference for a java program. The java program would interpret
the parameters and fill the standard VRML node for describing a surface, the IndexedFaceSet node.
Within the scene graph, NurbSurface would appear to behave exactly as an IndexedFaceSet.

Interactivity. VRML supports a variety of sensor nodes including environment sensors, pointing
device select sensors, and point device drag sensors. Environmental sensors trigger on a variety of
browsing events that might occur while viewing a world. For example, the visibility sensor will
trigger an output event when a specific part of the scenegraph becomes visible. Pointing device
select sensors trigger based on a user-generated button-up event. For example, an output event is
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triggered when a specific piece of geometry is selected. Pointing device drag sensors trigger on a
user-generated button-down/drag/button-up sequence. For example the sphere sensor maps the drag
part of the sequence into a spherical rotation output event.

Animation. VRML has a variety of interpolator nodes for use in creating linear keyframed animation
supporting interpolation in: colors, coordinates (arrays of 3-tuple floats), normals, orientations,
positions (3-tuple float), and, scalar floats. Each interpolator node has an input event named set fraction
which triggers an output event named value changed. The event set fraction defines the key and the
output event value changed contains a keyed output value of the appropriate type.

3. An Overview of the VRML Compressed Binary Format

The VRML format was designed to be minimal yet complete. It does not suffer from the bloat
of earlier scene graph technologies [11] but it is still powerful enough to describe complex, animated
worlds. Unfortunately, even small VRML files tend to be quite large (>100 KB). Our proposed VRML
Compressed Binary Format [8] addresses this problem by representing the 3D information contained
in a VRML ascii file in a concise, rapidly-parsable binary format with user control over the precision
requirements for geometric and property data.

The format combines a binary encoding scheme together with the geometric compression scheme
of Taubin and Rossignac [9] to create compact, rapidly-parsable VRML files. The format does not
require any modifications or extensions to the existing VRML specification and is currently being
evaluated by the Compressed Binary Format Working Group of the VRML Consortium.

The binary encoding is a direct transliteration of the ascii format with a couple of additions to
enable the geometric compression of several nodes. It was designed such that the conversion to and
from the binary format need not have any effect on the structure of the scene graph. In addition to
the transliteration of ascii data, the compressed binary format supports two compression mechanisms.
One mechanism, referred to as field compression, provides for the compression of the following fields
at the file scope:

� Any SFColor or MFColor field
� MFVec3f when used as a normal for a built-in node, specifically:

– Normal::vector
– NormalInterpolator::keyValue

Another, more interesting, mechanism, referred to as topologically-assisted compression, enables the
compression of the following VRML nodes:

� CoordinateInterpolator
� ElevationGrid
� IndexedFaceSet
� PointSet
� NormalInterpolator

Topologically-assisted compression acts on both the connectivity and property fields of these nodes.
The compression of connectivity information is lossless. The compression of property data (vertex
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coordinates, normals, colors, and texture coordinates) is optionally lossy and may be controlled by
the user.

Several VRML nodes are designed to contain geometry. Some of the geometry nodes are com-
pletely specified with small number of parameters. For example the Sphere node requires just a
radius. Nodes such as these are already semantically compressed, but the range of shapes that they can
describe is rather limited. The work horse of the geometry nodes is the IndexedFaceSet node or IFS
for short. Any polygonal shape can be described with an IFS. The IFS may also specify properties
such as normals, colors or texture coordinates. The ascii specification of an IFS is expensive in terms
of storage requirements. A typical VRML file containing an object of a couple hundred faces will have
a size of about 30 kilobytes. The description of a large virtual world can easily reach 10 megabytes.
As will be shown in subsequent sections, the most dramatic reductions in storage requirements result
from the topologically-assisted compression of the IFS.

4. Related Work on Geometric Compression

There are several options for representing and storing geometric models. Options include bound-
ary representations, constructive solid geometry (CSG) methods, voxel representations, and various
polygonal models. When evaluating these alternatives for use in a particular application several issues
should be considered. For example, if the data is stored for use by a solid modeler then perhaps the
best selection is the CSG model. Alternatively, when the application primarily involves view-only
access, polygonal models with their simplicity and popularity are frequently chosen. VRML is based
on a polygonal model. The VRML polygonal model is simply a list of faces with each face described
by a sequence of vertex references. Each vertex reference points to a separately stored triple of floating
point numbers representing the coordinates in three space. The VRML polygonal model is simple,
and, although the vertex referencing scheme is somewhat compact, there is room for a considerable
reduction in model size. One easy change is to use a binary rather than an ascii representation.

Another standard technique involves removing redundant vertex references. In VRML several
topologically-adjacent faces store the same vertex index. Models composed strictly of triangles can
be compressed by constructing triangle strips and triangle fans. As shown in figure 4, a triangle strip
is a chain of triangles where each new vertex reference implicitly defines a new triangle. The trailing

Triangle strip Triangle  fan

Figure 4: Triangle strip an fan.

edge of the previous triangle is used with the incremental vertex index to form the next triangle in
an alternating, “zig-zag” fashion. A triangle fan is a similar structure, except the chain of triangles

6



is constructed around one common vertex instead of alternating left and right. As shown in figure 5,
by including a swap operation (one bit per triangle), triangle strips and fans may be combined into
a single structure called a generalized triangle strip. If we assume that we are dealing with a closed

0 2

1 3

4

5 6

7

0, 1, 2, 3, 4, 5, 6, 7
0, 0, 0, 0, 0, 1, 0, 0

vertex references: 

swap bit:

Figure 5: A generalized triangle strip.

triangulated surface of low genus, then if there are n vertices there will be approximately 2n triangles.
If we can turn such a manifold into a small number of generalized triangle strips then the storage
requirement will be approximately 2n(log(n) + 1) bits.

Deering’s [5] generalized triangle mesh extends the generalized triangle strip by adding a four
bit address buffer along with a couple of new operations. The four bit address buffer enables the
addressing of the 16 most recently visited vertices and the new operations permit direct access to these
vertices. In the compressed format proposed in [5] the topological information is lost so that it is not
easy to compare the storage requirement with techniques that preserve the topology. Bar-Yehuda and
Gotsman [2] have performed a general analysis on the use of buffers for rendering triangular meshes.

The generation of optimal generalized triangle strips and generalized triangle meshes is a chal-
lenging computational geometry problem. In fact, the generation of an optimal generalized triangle
strip (a Hamiltonian path of triangles) has been shown to be an NP-complete problem [1]. Heuristic
approaches have been proposed for the generalized triangle strip [6]. However, we are not aware of
any published work on the generation of generalized triangle meshes.

The main goal in both [2] and [5] is to design a storage format that minimizes the amount of
computation required for the rendering process. Assuming that most of the time is spent processing
vertex coordinates for projection and clipping operations, the rendering cost is proportional to the
number of vertices sent to the graphics engine. Optimally, each vertex should be sent once and only
once. In [2] it is proved that this requires a buffer of size at least 1:649

p

n and at most 12:72
p

n for
a triangle mesh with n vertices. The topology can be preserved, but addressing a pushed vertex still
requires O(log n) bits and, as a result, storing a whole mesh with this format will require O(n log n)
bits.

Another class of methods, including the one used in the current work, start with a vertex spanning
tree. Turán [10] shows that a planar graph and, consequently, faces and edges of a closed surface with
genus 0, can be encoded using 12n bits. As will be shown in section 7, the method used in the current
work encodes the topology for large polygonal models with storage requirements approaching 1 bit
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per face.

5. Topologically-assisted Compression

In this section we briefly describe the method of Taubin and Rossignac for representing triangular
meshes in compressed form [9]. A triangular mesh is defined by the location of its vertices (positions)
and by the association between each triangle and its sustaining vertices (connectivity). Optionally,
properties such as colors, normals, and texture information which do not affect the 3D geometry, but
do influence the way it is rendered, may be attached to the mesh.

To develop the basic concepts, we will first concentrate on simple triangular meshes, that is,
triangulated connected oriented manifolds without boundary, of Euler characteristic 2, and without
properties (normals, colors, or texture mapping coordinates). Examples of simple and non-simple
meshes are shown in figure 7.

5.1. Simple Mesh

Let us assume we have a simple mesh composed of V vertices, E edges and T triangles. If a
vertex spanning tree is constructed on the graph defined by the vertices and edges of the mesh and
if the mesh is cut through the edges of the vertex spanning tree, the result is a triangulated simply
connected polygon. We make the following observations.

1. The result of cutting through the vertex spanning tree is a connected oriented triangular mesh.
2. The boundary of the mesh forms a single bounding loop of edges and there are no internal

vertices.
3. Each edge of the vertex spanning tree corresponds to exactly two boundary edges of the new

mesh.
4. A spanning tree of V nodes has exactly V � 1 edges, and so the bounding loop has 2V � 2

edges and vertices. Therefore, the resulting mesh has 2V � 2 vertices, E + V � 1 edges, and T
triangles. The Euler characteristic is equal to (2V �2)�(E+V �1)+T = (V �E+T )�1 = 1;

5. Every connected oriented manifold triangular mesh of Euler characteristic equal to 1 is homeo-
morphic to a topological disk [7].

Vertex spanning tree. The branching nodes and the leaf nodes of the vertex spanning tree decompose
the tree into vertex runs. A vertex run is a sequence of edges connecting a starting leaf or branching
node to subsequent regular nodes and ending in a leaf or branching node. The vertex spanning tree is
represented as an array of triplets, each triplet is composed of a length, a branching bit, and a leaf bit,
and describing a vertex run. These triplets are ordered according to when the corresponding runs are
visited during depth-first traversal of the tree starting from a root leaf node. Runs with a common first
node are ordered according to the global orientation of the mesh. The length is the number of edges
of the run, the branching bit indicates whether the run is the last run sharing the current branching
node or not, and the leaf bit indicates if the run ends in a leaf or branching node. This representation
efficiently encodes the structure of the vertex spanning tree. To increase the compression ratio, the
compression algorithm attempts to build vertex spanning trees with the least number of runs.
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A B C

D E F

G H I

Figure 6: Representation of a simple mesh in compressed form. The vertex spanning tree (A,B)
is composed of vertex runs. Cutting through the vertex tree edges produces a topological simply
connected polygon(C,D). The bounding loop (E) is the boundary of the polygon. The dual graph of
the polygon is the triangle spanning tree (F). Triangle runs end in leaf or branching triangles. Leaf
triangles are red, regular triangles are yellow, and branching triangles are blue. The triangle spanning
tree has a root triangle (G). Marching edges (H) connect consecutive triangles within a triangle run.
Each branching triangle has a corresponding Y-vertex. Two consecutive branching triangles are
represented as a run of length one (I).
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A B C

Figure 7: Examples of simple meshes (A), and non-simple meshes (B,C).

Bounding loop. The bounding loop is constructed during the recursive traversal of the vertex tree
and is represented by a table of 2V � 2 vertex indices. References to vertices encountered going
down the tree are added to the table during the traversal. Except for leaf vertices, these references
are also pushed onto a stack. The two bits (branching bit and leaf bit) which characterize each run
of the vertex tree are used to control the tree traversal and the popping of the stack. When a leaf is
visited, references are popped from the stack and added to the bounding loop table until the reference
to the branching vertex where the next vertex run starts is popped, or until the stack is exhausted.
Since it can be derived from the structure of the vertex spanning tree, the bounding loop look-up
table is not included in the compressed representation of the mesh. However, both compression and
decompression algorithms must construct the look-up table.

Triangle spanning tree. The dual graph of the polygon forms a binary spanning tree of the triangles
of the mesh, which can also be decomposed into runs. This triangle spanning tree is encoded in the
same way as the vertex spanning tree is encoded. However, because the triangle spanning tree is
binary, it is sufficient to store the length of each triangle run and the leaf bit. The root triangle of
the triangle spanning tree is identified by the bounding loop index of its tip. Together, the vertex and
triangle spanning trees permit the recovery of the length and boundary of each triangle run and the
vertices that bound each triangle.

Traversing a triangle run along the direction which corresponds to a top-down traversal of the
triangle spanning tree defines the left and the right boundaries. Because the left and right boundaries
of each triangle run form connected subsets of the bounding loop, the boundary of each run can be
recovered if the two starting vertices (one on each side), and the number of vertices along the left and
right boundary of the run are known.

Marching edges. The internal edges of the polygon are called marching edges. Within each triangle
run, each marching edge shares a vertex with the previous marching edge in the run. That shared
vertex could lie on the left or on the right boundary. A single bit of information per marching edge is
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used to encode the correct side. These bits are concatenated in the order in which the corresponding
marching edges are visited by the decompression algorithm. They form what we call a marching
pattern of left or right steps. N � 1 marching bits are needed to encode the triangulation of a triangle
run of length N .

Y-vertices. If a triangle run ends at a branching triangle, the next vertex is not adjacent to the
marching edge along the loop. However, the bounding loop indices that identify these Y-vertices
need not be stored. They are derived by a simple preprocessing step of the decompression algorithm.
Indeed, the distance along the loop from either the left or right vertices to a Y-vertex can be derived
from the triangle spanning tree independently of the marching pattern.

For computational convenience, the Y-vertices are identified not by the absolute index in the
bounding loop look-up table, but by their offset (topological distance along the bounding loop) in that
table from the reference to the last vertex of the left boundary of the corresponding triangle run. These
offsets are precomputed and stored in the Y-vertex look-up table.

For each branching triangle, the distance along the loop from either the left or right vertices to
the Y-vertex, the left branch boundary length and right branch boundary length, can be computed
by recursion. The length of the boundary of a branch starting with a run of length n is equal to
n + n

L

+ n

R

� 1, where n
L

and n

R

are both equal to 1 if the runs end at a leaf triangle, and equal
to the left and right branch boundary lengths of the branching triangle, if the run ends at a branching
triangle.

The branch boundary lengths are computed for each branch as a preprocessing step of the de-
compression algorithm, and stored in a table. When a branching triangle is encountered during the
triangle reconstruction phase, the identity of the corresponding Y-vertex can be determined by adding
the left branch boundary length to the loop index of the left vertex. Because of the circular nature of
the bounding loop table, this addition is performed modulo the length of the bounding loop.

Compression of vertex positions. Because proximity in this vertex spanning tree often implies
geometric proximity of the corresponding vertices, we can use ancestors in the tree to predict vertex
positions, and thus only need to encode the difference between predicted and actual vertex positions.

When vertex coordinates are quantized by truncating the coordinate to the nearest number in a
fixed point representation scheme, these corrective vectors have on average smaller magnitude than
absolute positions and can therefore be encoded with less bits. Furthermore, the corrective terms are
then compressed by entropy encoding using Huffman coding [4].

Within the vertex tree there is a unique path from each vertex to the root. The depth of a vertex is
the length of this path, with the depth of the root vertex equal to zero. A bounding box containing all
the vertex positions is used to define the fixed precision format. If v

n

denotes the result of quantizing
to B bits the normalized relative position of a vertex of depth n within the bounding box, then each
vertex position v

n

is defined by:

v

n

= �(v

n

) + P (�; v

n�1

; : : : ; v

n�K

) ; (5.1)
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where �(v

n

) is the vertex position correction associated with that vertex, P is a vertex positions
predictor function, � and K are parameters for the predictor, and v

n�1

; : : : ; v

n�K

are the K ancestors
of the vertex along the unique path to the vertex tree root. Note that since the top vertices of the tree
may not have K ancestors, we define vertex positions corresponding to negative depth as equal to
the position of the vertex tree root. The vertex position corrections (integer values) are represented
concatenated according to the vertex tree pre-order, and, as mentioned above, further entropy encoded.

Compression algorithm. Compressing a simple mesh is performed with the following steps:

1. constructing the vertex and triangle spanning trees,
2. encoding the vertex tree,
3. compressing the vertex positions,
4. encoding the triangle tree, and
5. computing and encoding the marching pattern.

Decompression algorithm. Decompressing a simple mesh proceeds using the following steps:

1. decoding the vertex tree,
2. reconstructing the table of vertex positions,
3. constructing the bounding loop (look-up table pointing to the vertex position table),
4. computing the relative indices for Y-vertices in the order in which they will be used, and
5. reconstructing and linking of triangle runs.

Several methods for constructing the spanning trees are described by Taubin and Rossignac [9].
The one that produces the best results performs a layered decomposition of the mesh and an incremental
construction of both trees. Intuitively, this process mimics the act of peeling an orange by cutting
concentric rings, cutting the rings open, and joining them as a spiral. This process is illustrated in
figures 8-A, 8-C, and 8-E. A vertex is chosen as the root of the vertex tree. The singleton consisting
of the root vertex is the first boundary. The n-th triangle layer is the set of triangles which are incident
to one or more vertices of the n-th boundary but do not belong to a previous triangle layer. The
(n + 1)-st boundary consists of all the edges of triangles of the n-th layer with neither one of the
two end vertices belonging to the n-th layer. The boundary edges do not constitute a tree, but most
typically each boundary is composed of one or more cycles. The layers are also typically composed
of cyclical triangle paths. This construction can incrementally generate both trees by converting the
rings into a spiral. Let’s assume that a vertex tree has been constructed with all the vertices included
in the first n boundaries, and a triangle forest has been constructed with all the triangles included in
the first n� 1 layers. For each connected component of the (n+1)-st boundary, one edge connecting
that component to a vertex of the n-th boundary is chosen and added to the vertex tree. All these cross
edges are chosen minimizing the number of new branches added to the two trees. Then, the edges of
the (n + 1)-st boundary are included in the vertex tree, after removing a minimum number of edges
to maintain the tree structures. These edges are also chosen minimizing the number of new branches.
Figure 9 illustrates this construction.
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A C E

B D F

Figure 8: Two ways of peeling an orange, A,B: The thick edges are the edges of the vertex tree
constructed on the mesh. C,D: The mesh is cut through the vertex tree edges (the vertex positions
have been modified here only to illustrate the creation of the cut). E,F: The result is a topological
simply connected polygon. The dual graph of this polygon is the triangle tree.

5.2. More General Meshes

Triangular manifold meshes of Euler characteristic other than 2, non-orientable, and with bound-
aries require minor extensions to the representation, compression and decompression algorithms. The
compressed representation of meshes with multiple connected components consists of the concate-
nation of the compressed components, perhaps with common compression parameters (bounding
box, number of bits per vertex coordinate, number and value of predictor coefficients, and Huffman
encoding tables).

Arbitrary Euler characteristic. When a connected oriented manifold without boundary is cut
through the edges of the vertex tree, the resulting mesh is triangle graph and not necessarily a simply
connected polygon. However, a simply connected polygon can be obtained by making 2 � � extra
cuts, along jump edges, where � = V � E + T is the Euler characteristic of the original mesh.

To find the jump edges, a triangle spanning tree is constructed on the triangle graph. The jump
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A B C D

Figure 9: Compression algorithm A: Triangular mesh. B: The topological distance from a chosen
vertex defines the layers. C: Vertex tree and triangle tree are constructed by traversing the layers in
order. D: Polygon resulting of cutting along cut edges with artificial gap introduced. Triangles are
color-coded according to their corresponding layer.

edges are then found by selecting the edges not crossed by this triangle spanning tree.

The representation defined for simple meshes is extended to account for the jump edges by using
a new table with one entry per jump edge. Each entry indicates the number of edges in the bounding
loop it short-circuits. In this extended representation, regular (non-branching and non-leaf) triangles
of the triangle tree incident to a jump edge are treated as branching triangles with one run of length
zero starting at the jump edge. Leaf triangles, including the root triangle, may be incident to zero,
one, or two jump edges. Furthermore, in the case of one jump edge, it may be the one incident to
either the left or the right vertex. This is encoded with two extra bits per leaf of the triangle tree in the
marching pattern.

Meshes with boundary. The representation is the same as for connected oriented manifold without
boundary described above, except that some edges of the bounding loop will have no incident triangles.
To ensure that after cutting through the vertex spanning tree the resulting mesh is connected, it is
sufficient to include all but one of the edges of each connected boundary component in the vertex
spanning tree, and to treat the remaining boundary edges as jump edges.

Non-orientable meshes. In the orientable case, when a jump edge is crossed the loop path encoun-
tered after the jump is traversed in the same direction as the one before the jump. In the non-orientable
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case the direction of loop traversal may or may not change across a jump edge. An extra bit per jump
edge is added to the marching pattern to represent changes of direction.

6. Topologically-assisted Compression and the VRML Compressed Binary Format

The discussion in the previous section was restricted to surfaces described by triangular meshes. In
this section, we extend the compression technique to handle polygons. Also in this section, we address
the property-binding models found in VRML. The encoding of VRML property data is complicated
by the existence of several options for binding property data. These options include: indexed, not
indexed, per face, per vertex or per corner. For each of the bindings, we define an ordering for the
storage of property values. Finally, we introduce a new scheme to compactly encode corner properties
for corners sharing both a common vertex and property value.

6.1. From Triangles to Polygons

The topology of an IFS is stored in its coordIndex field. The coordIndex field contains a sequence
composed of indices and “-1”s. The “-1”s partition the sequence into subsequences. Each subsequence
of indices describes a simply connected polygonal face composed of three or more indices.

We refer to an arbitrary triangulation of a face as a topological triangulation. A topological
triangulation does not take into account the geometric position of the component vertices. We refer
to the additional edges used to triangulate a face as non-polygonal edges. The other edges are called
polygonal edges.

In order to extend the compression algorithm to polygonal surfaces, we construct a spanning
tree on the polygonal surface. A spanning tree constructed in this manner is simply a vertex tree
consisting of only the polygonal edges. We then topologically triangulate each polygonal face to
obtain a triangular surface. This construction insures that every non-polygonal edge will be an interior
(marching) edge. Moreover, the interior edges can be implicitly ordered by a depth-first traversal of
the triangle trees. Therefore we can use a bit stream with as many bits as the number of interior edges
to differentiate between polygonal and non-polygonal edges. This surface can be compressed using
the scheme discussed in the previous section. The compressed triangulated surface together with this
bit stream provides sufficient information to recover the polygonal surface.

Polygons are recovered by first reconstructing the triangular surface and subsequently removing
the extra non-polygonal edges. Removing extra edges means merging adjacent triangles. We refer
to two triangles in a triangle tree as being polygon-connected if they share a common non-polygonal
interior edge. Each polygon-connected component corresponds to a polygon to be recovered.

As shown in figure 10, a polygon may spread over several triangle runs. As explained in Section
5 the reconstruction of the triangular mesh is accomplished using a depth first traversal of the triangle
runs. Within a run, triangles are recovered by advancing the current vertex index on the left or on the
right according to the marching pattern. Since a polygon may spread over several triangle runs we
cannot bound the recovery of a polygon to an individual run. However, we will show that it is still
possible to reconstruct all the polygons in one linear traversal of the triangle tree.
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Figure 10: One can think of a polygon as an amoeba constrained to stay in the interior of the triangle
tree.

We refer to a connected subset of the boundary of a polygon as a polygon segment. A polygon
partially covering a run intersects the left (or right) side of the run in a single polygon segment.
Using this construction and paying special attention to branching and leaf triangles, the boundary of
a polygon is partitioned into polygon segments.

We describe our polygon reconstruction algorithm using left and right polygon segment stacks
to store partially recovered polygons. In the actual implementation the polygon segments are recon-
structed using two stacks: a vertex stack and a flag stack. The vertex stack is used to store the polygon
vertex indices. The flag stack is processed in parallel with the vertex stack. The flag stack is used to
indicate the beginning and the end of the polygon segments.

Using a depth-first traversal, the algorithm processes the triangle tree run by run pushing vertices
onto, as appropriate, the left or right stacks to form left and right polygon segments. When a new
polygon is encountered, the first vertices are marked for future reference. If a polygonal edge is
encountered then the right polygon segment is popped from the right stack onto the left stack. If
the popped right segment contains a marked vertex then a polygon has just been completed and the
left stack is popped to form a new polygon. Figure 11.a through figure 11.k illustrates the recovery
of polygons contained in the the triangle tree of figure 11-L. The triangle tree is composed of three
runs and its root triangle is marked “Root”. In figure 11, arrows are marked Li or Ri where L and R
indicate an extremity of the left or right edge for the ith event. The events correspond to: start a new
run, pop a stack, and push a new polygon segment. The ordering is consistent with the depth-first
traversal. By convention, the first visited edge is the right edge of the root triangle.

The reconstruction sequence begins with figure 11-A. Here, one vertex is pushed on both left
and right vertex stacks. The vertices are represented as unfilled circles to emphasize the fact that a
new polygon is starting. We call such vertices start vertices. In the actual implementation this event
would be recorded by pushing a start flag on both the left and right flag stacks. When we encounter
polygon edge (L2,R2) the polygon segment in the right stack is popped onto the left stack. This event
is represented by the arrow marked “1” in figure 11-B. Since the right polygon segment ends with a
start vertex we know that a polygon has just been completed. The new polygon is formed by popping
a segment off the left stack. This event is represented by an arrow marked with a “2” on figure 11-C.
Figure 11-D shows the state of the stacks after processing the remainder of the first run. Two new
(blue) polygon segments, one on the left and one on the right, have been pushed onto the stacks.
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Figure 11-E shows the initial processing of edge edge (L4,R4). Here, one vertex is pushed on
the left stack to augment the left segment while a new segment with a single vertex is pushed on the
right stack. Since the right edge of the branching triangle has not yet been visited we do not know at
this time whether or not the vertex forms a contiguous segment with the previous right segment in the
stack and we classify the vertex as a separate segment. Since (L4,R4) is a polygon edge, the right top
segment (a single vertex) is popped onto the left stack. This event is shown in figure 11-F.

Next, in figure 11-G, we start the pink polygon by processing edge (L5,R5). Since the run ends
in a leaf triangle we can connect the current left and right segments. As shown in figure 11-H, this
is accomplished by pushing the tip of the leaf triangle onto the left stack and then popping the right
stack onto the left stack as indicated in the figure by an arrow marked with a “1”. Since popping the
right stack yields a start vertex we can reconstruct a polygon. In the same figure, the arrow marked
“2” indicates the popping of the left stack to reconstruct the polygon.

A new run starts with edge (L6,R6). This edge is a polygon edge and , once again, we connect
the top left and right segments. Since the right segment contains a start vertex we also reconstruct
a polygon as shown in figure 11-I. Figures 11-J and 11-K show the final steps in the reconstruction
algorithm.

The ordering of faces in the decompressed IFS is important for property recovery. We always
order the faces according to the order in which the face’s starting edge is encountered during a depth
first traversal. However, the reconstruction algorithm outputs a face when its last edge is visited.
Fortunately only minor modifications are required to modify the ordering. Figure 12-A shows the
corner ordering in the output coordIndex for the example used in figure 11.

6.2. Geometry and Property Encoding

Geometry encoding refers to the encoding of vertex coordinates (x, y, z). As such, geometry can
be considered as a particular property, that is, floating point values attached to vertices. We support
three types of property bindings. Properties may be attached to the vertices, the faces, or the corners
of the polygonal surface. Furthermore, there are two options for specifying a property value. One
option is to explicitly encode the property value, the other option is to specify an index into a palette
of values. Finally there are four basic types of property values: floating point values, integer values,
color values (a tuple of three floating point values in [0,1]), and normal values (3 dimensional unit
vectors).

To establish a connection between property data and the recovered topology we have to define
an implicit ordering on the occurrences of the appropriate feature: vertices, faces or corners. By
storing the properties using this implicit ordering it is possible to attach property values to their
proper location. Hence, the property binding dictates the order in which property values are stored.
Since the ordering is derived from the topology encoding, we say that our compression technique is
topologically-assisted. The ordering for:

� vertices is obtained from the depth-first traversal of the vertex tree,
� for faces is the same ordering as used in the output coordIndex field, during recovery, and,
� for corners is the same ordering as used in the output coordIndex field.
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Figure 11: Schematic view of the polygon reconstruction.
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Floating point value encoding. The standard binary encoding for IEEE floating points uses 32
bits. For some property/topology combinations it is possible to use as few as 4 bits per value with
only minor losses in accuracy. To compress floating points we combine a delta encoding scheme [5]
with a predictor/corrector model. Basically, we integerize the floating-point values and then apply a
linear predictor/corrector. As was discussed in section 5.1, we use an evenly subdivided bounding
box enclosing the set of values to integerize the floats. When the property is a tuple of values rather
than a single value we use a bounding box of the same dimension as the tuple (3 for the coordinates).
For coordinate data, our experience has been that a precision of 8 to 12 bits is sufficient. An 8 (12) bit
precision corresponds to bounding box with 256 (4096) elements per side.

The predictor/corrector model requires a parent relationship. The parent relationship is implicitly
defined using orderings defined for each binding type. Basically, for each binding type, the spatial
coherence of nodal ancestors derived from the parent relationship is used to predict values.

When the property is bound to the vertices the parent relationship is directly obtained from the
vertex tree. When the property is bound to the faces the face parent relationship is derived from the
dual of the triangle tree after removing the non polygon edges as shown Figure 12-B. This ordering is
the same face ordering used for the coordIndex field. When the property is bound to the corners we
use a slightly different scheme. The path of the corner ordering defined by the coordIndex field will,
in general, not lend itself to the predictor/corrector model. This could lead to poor results. Instead, we
use a corner ordering on corners in the triangle tree to induce an ordering on the face corners. When
all faces are triangles the corner ordering is based on the following pattern:

� from previous triangle, cross-over edge to adjacent corner
� traverse cross-over edge to second corner,
� proceed to third corner,
� cross-over edge into next triangle.

When the mesh contains non-triangular faces, we use the same scheme and contract the corner ordering
by skipping over “redundant” or previously visited corners. An example showing the ordering along
with our conventions for root and branching triangles is shown in Figure 12-C.

Integers. When the integer values possess some spatial coherence we use a predictor/corrector
scheme identical to the one defined for the floating point numbers. Otherwise, we encode the values
using log n bits per value where n is the greatest integer value.

Color encoding. Colors are integerized and stored with a user-specified fixed number of bits.

Normal encoding. Normals are quantized with a subdivision scheme that produces an optionally
lossy compression of 3 dimensional unit length vectors1. A normal is encoded into a sequence of
3+2n bits, where n is the number of discrete normals in one quadrant. The first three bits of the
coded normal determine the normal’s octant. Each octant is spanned by a base triangle defined by the
3 canonical vectors. An octant is discretized by recursively subdividing the base triangle n times as

1This encoding scheme was developed with Fabio Pettinati
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Figure 12: Implicit ordering and parent relationship from the triangle tree. A: The corner ordering.
B: The face tree. C: The corner tree.

shown figure 13-A - 13-C. A normal is encoded using the triangle’s number, where the triangles are
enumerated as shown in Figure 13-C.
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Figure 13: Three subdivision levels of the base octahedron. A: subdivision level 0. B: subdivision
level 1. C: subdivision level 2. D: the triangle enumeration for level 2.

Compact storage of corner properties. Since each face has three or more vertices the number
of corners on a surface is at least three times the number of faces. Furthermore, from Euler’s
formula, the number of faces is at least twice the number of vertices (up to the characteristic of the
surface). Therefore, the number of corners is at least six times the number of vertices. Consequently,
corner-based properties require significantly more storage than vertex-based properties.
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To alleviate the storage requirements for corner properties we have devised a scheme to efficiently
handle corner properties shared around a common vertex. Operating around the star of a vertex, the
scheme stores one property for each collection of connected corners sharing a common property with
an additional cost of one discontinuity bit per corner. The discontinuity bits are put into a bit stream
in the order defined by the coordIndex field. The discontinuity bits are assigned as follows. First we
give an orientation to each vertex star. We then cyclically visit every corner in the star of a vertex
associating a “1” to a corner whenever the prior corner had a different property. Otherwise we assign
a “0”. Figure 14 shows a vertex shared by 6 faces with different properties. The “0”s and “1”s in the
figure are values from the discontinuity bit stream. A “1” indicates that a property value is associated
with this corner. A “0” indicates that a corner should obtain its property value from the first “1” corner
encountered by cycling counterclockwise.

1

1

1

0 0

0

Figure 14: The property star of a vertex and the discontinuity bits associated to the corners.

7. Results

In this section we will examine the application of our compression algorithm to a test suite of
VRML models. As mentioned previously, there are several parameters available to control the degree
of lossiness during compression of coordinates, colors, normals, and texture coordinates. Since the
selection of these parameters affect the visual quality of the final model, it is difficult to automatically
choose optimal parameters. In the absence of good heuristics, it appears that the best solution is
to interactively select the compression parameters at the time a world is saved in compressed form.
Additionally, options are available for sharing common bounding boxes and specifying predictor
coefficients.

Coordinate quantization. The sequence of images on figure 15 shows how the geometry of one
particular model (without properties) changes as a function of the number of bits per vertex coordinate.
Similar effects can be observed by varying the number of subdivision levels per normal, the number
of bits per color component, and the number of bits per texture coordinate.
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Figure 15: A: The original model. B: The same model quantized to 11 bits per coordinate. C: The
same model quantized to 9 bits per coordinate.

A B C

Figure 16: A: The original model. B: The same model quantized to 9 bits per coordinate using
one common bounding box for the head and the teeth. C: The same model quantized to 9 bits per
coordinate using a separate bounding box for the head and the teeth.

Bounding boxes. Another option involves selecting a strategy for grouping geometry with respect
to bounding boxes. In our current implementation, the user may choose either to use a single bounding
box to quantize all the IFS vertex coordinates contained in a file, or to use one bounding box per
IFS. In general, but not always, the first option produces a smaller compressed file. In the figure 16,
the teeth of the crocodile are grouped into two IFS, one for the upper teeth, and another for the lower
teeth.

The side of the smallest bounding box for the whole object is about four times larger than the side
of the bounding box for the teeth. By using the same number of bits per vertex coordinate but with
one bounding box per IFS, the teeth vertex coordinates are specified with four times the precision.
Because the overall the number of vertices in the teeth is much smaller than the total number of vertices
in the rest of the body, the cost is not significant. In fact, for this particular case the compression
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Figure 17: A: Model quantized with one bounding box. B: The same model quantized with multiple
bounding boxes.

ratio is slightly better for the second case. This is most likely due to a discrepancy in the distribution
of prediction errors between the teeth and the rest of the body. This example shows that there is
opportunity for optimization that is not exploited in our current implementation.

Care should be taken to prevent the creation of cracks when choosing to use one bounding box
per IFS. The bounding box along with the number of bits per vertex coordinate define a rectangular
grid in 3D. The quantized vertices reside at the nodes of this grid. To prevent the creation of cracks,
the individual bounding boxes and the number of bits per coordinate should be chosen such that
the bounding box grids match in 3D. However, in our current implementation this is not possible.
Currently, the user can only specify one bounding box per file or one bounding box per IFS. In the
former case the smallest bounding box containing all IFS coordinates is chosen, in the latter case the
smallest bounding box containing the coordinates of the individual IFS is selected. Figure 17 shows
cracks caused by using one bounding box per IFS. Cracks are created only when two vertices that
coincide in 3D in the original uncompressed geometry are quantized using combinations of bounding
boxes and numbers of bits per coordinate that produce non-matching grids.

Predictor / corrector options. The number of ancestors used to predict vertex coordinates does not
have any effect on the quality of the geometry, but it does affect the compression ratio. Ideally, the
compression algorithm should estimate the optimal number of ancestors. Our current implementation
does not perform this optimization, instead, the number of ancestors may be specified by the user
and defaults to two. In general, using two or more ancestors reduces the compressed binary size by
10-15% with respect to using only one ancestor, but there may be exceptions. Using more ancestors
may decrease or increase the size of the compressed file. Usually, using more than four or five
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ancestors does not produce a significant enough reduction in size to warrant the extra computation
effort on decompression.

A possible explanation for this behavior is that, in our implementation, the compressor does not
attempt to calculate the predictor coefficients that would produce the minimize file size. Instead it
uses a sub-optimal strategy of minimizing the average square prediction error. This strategy was
chosen because selecting the number of ancestors to minimize the file size is a difficult combinatorial
optimization problem, while minimizing the average square prediction error involves a simple explicit
solution based on matrix computations. Again, there is potential for improvement.

7.1. Examples

Our geometric compression algorithms require each IFS to be represented by a manifold surface
with one or more connected component. A significant number of VRML files do not meet this
requirement. To overcome this problem we have developed a method to convert a singular (non-
manifold) IFS into a manifold surface without modifying the geometry. This work will be presented
in a forthcoming article.

We have tested the compression algorithm on more than 600 VRML files. The models came from
four sources:

� http://www.microsoft.com/vrml/stack. The suite contains over 200, relatively
small, Viewpoint (R) 3D models in four categories: nature, architecture, transportation, and
accessories.

� http://www.acuris.com/free 25.htm. Some 23 models, both VRML 1 and VRML
2.0, from the Acuris (R) web site.

� http://www.3dcafe.com/meshes.htm. More than 100 VRML 1 models downloaded
from the 3D CAFE (R) 3D Model library.

� http://www.ocnus.com/models/models.html. Over 300 VRML 1 models from
the Ocnus Rope Company (R) VRML repository.

The geometry content in these files ranges from a couple faces to more than 10,000 faces. Before
compressing these files the models were converted, if necessary, from VRML 1 to VRML97. Also,
we transformed any singular IFS into non-singular IFS.

Figure 18 uses a graph with logarithmic scales to illustrate the efficiency of the topology encoding.
The plot shows the ratio of the size of the binary compressed topology (without geometric or property
information) divided by the number of faces. For large models this ratio approaches a value of one.
This limit is due the fact that, in our current implementation, there will always be at least one marching
bit per face. Further improvement might be obtained by run-length encoding these bit streams. Figure
19 illustrates the relationship between the average number of faces per connected component and the
compression ratio obtained by dividing the size of the original ascii file by the size of the compressed
binary file. The following parameters were used to compress the model: 8 bits per vertex coordinate,
6 subdivision levels per normal, 6 bits per color component, 8 bits per texture coordinate. In this
plot compression ratios vary from 3 to over 100, with the majority of the models possessing ratios
greater than 10. Since IFS with a large number of faces per connected component typically have
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Figure 18: Logarithmic plot of topological bits per face for 650 VRML97 files.

larger quantities of spatially coherent data, they will, in general, compress better than IFS possessing
a smaller numbers of faces per connected component. This trend shows up in the above plot as a
general increase in compression ratios as the average number of faces per connected component per
file increases from left to right.

Sometimes 8 bits of precision is not adequate for geometric coordinates. Figure 20 examines the
cost of increasing the coordinate precision from 8 bits to 10 bits. On average, an increase from 8 bits
to 10 bits results results in less than a 15% increase in the compressed binary file size. For the just
about all graphic applications, 12 bits of coordinate precision should suffice. Figure 21 examines the
cost of increasing the coordinate precision from 8 bits to 12 bits. On average, an increase from 8 bits
to 12 bits results in less than a 23% increase in the compressed binary file size.

Figure 22 demonstrates the influence of the number of coefficients used in the predictor model. In
this figure, we compare the size of the compressed binary file resulting from one predictor against the
size resulting from two predictors. In general, but not always, using two coefficients is more efficient
than using one.

8. Conclusion and Future Work

Perhaps the biggest challenge currently facing VRML is the rapid delivery of compelling content.
Compelling content frequently requires the specification of significant quantities of 3D geometries
with attached properties. As a result, the transmission times for VRML files containing compelling
content frequently prohibits access in reasonable time. Our proposed binary format address this
challenge by reducing the size of representative VRML files by an order of magnitude.
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Figure 19: Logarithmic plot of eight bit compression ratios for 650 VRML97 files.
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Figure 20: Logarithmic plot comparing the cost of 10 bits of coordinate precision to cost of 8 bits of
coordinate precision for 650 VRML97 files.

Future work. As we saw in the previous section coordinates for several IFS can be quantized with
a common bounding box. Sometimes this is desirable since it prevents quantization cracks between
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Figure 21: Logarithmic plot comparing the cost of 12 bits of coordinate precision to the cost of 8 bits
of coordinate precision for 650 VRML97 files.

coincident edges from different IFS. However, as was shown in figure 16, the sharing of a bounding
box may also result in a poor quantization. It would be nice to automate the grouping process using a
heuristic based on the relative scales, proximity, and coincident boundaries.

A similar grouping issue occurs for Huffman encoding and the predictor/corrector parameters. It
is not easy to decide when different objects should share a common code book or common predic-
tor/corrector coefficients. Finally, a mechanism to evaluate the effects of quantization parameters on
the visual quality of an IFS would allow the automatic specification of these parameters.

References.

[1] E. Arkin, M. Held, J. Mitchell, and S. Skiena. Hamiltonian triangulations for fast rendering. In Second
Annual European Symposium on Algorithms, volume 855, pages 36–47. Springer Verlag, September 1994.

[2] R. Bar-Yehuda and C. Gotsman. Time/space tradeoffs for polygon mesh rendering. ACM Transactions on
Graphics, 15(2):141–152, April 1996.

[3] R. Carey, G. Bell, and C. Marrin. The Virtual Reality Modeling Language ISO/IEC DIS 14772-1, April
1997. http://www.vrml.org/Specifications/VRML97/DIS.

[4] T.M. Cover and J.A.Thomas. Elements of information theory. Wiley, New York, 1991.

[5] M. Deering. Geometric Compression. Computer Graphics (Proc. SIGGRAPH), pages 13–20, August
1995.

27



3dcafe
Acuris
Ocnus

Microsoft

Number of faces per connected component

on
e

an
ce

st
or

si
ze

/t
w

o
an

ce
st

or
si

ze

100001000100101

5

4

3

2

1

0

Figure 22: Logarithmic plot comparing the cost of one predictor ancestor to the cost of two ancestors
for 650 VRML97 files.

[6] F. Evans, S. Skiena, and A. Varshney. Optimizing triangle strips for fast rendering. In IEEE Visualization
’96, October 1996.

[7] W.S. Massey. Algebraic Topology, An Introduction. Harcourt, Brace & World, Inc., 1967.

[8] G. Taubin, W.P. Horn, and F. Lazarus. The VRML Compressed Binary Format, June 1997.
http://www.research.ibm.com/vrml/binary.

[9] G. Taubin and J. Rossignac. Geometry Compression through Topological Surgery. Technical Report
RC-20340, IBM Research Division, January 1996.
http://www.research.watson.ibm.com/vrml/binary/pdfs/ibm20340.pdf.

[10] G. Turán. On the succint representation of graphs. Discrete Applied Mathematics, North-Holland, 8:289–
294, 1984.

[11] J. Wernecke. The Inventor Mentor. Addison Wesley, New York, 1994.

28


