
CR13: Computational Topology
Exercises #4

Due October 19th

1. Let G be a connected graph that is not a tree. Recall that the orientable (resp.
non-orientable) genus g (G ) (resp. g̃ (G )) of a graph is the smallest genus of an
orientable (resp. non-orientable) surface on which it embeds. Show that they
satisfy:

g̃ (G )≤ 2g (G ) +1.

Solution: Let S be a surface of minimal orientable genus on which G can be
embedded. Then this embedding is cellular, for otherwise one could embed
G on a surface of smaller genus by replacing the faces that are not disks with
disks. Now, pick one of the disks of this cellular embedding, and replace it with
a Möbius band. The resulting surface S̃ is non-orientable (because it contains a
Möbius band), and the embedding of G on S̃ is non-cellular, but it can be made
cellular by adding one edge, cutting the Möbius band into a single disk. Then,
comparing the Euler characteristics of S and S̃ , we obtain that g (S̃ )≤ 2g (G )+1,
and thus g̃ (G )≤ 2g (G ) +1.

Let Gn be the family of graphs in Figure 1. The Ai are edges that wrap around
and identify opposite points.

2. Show that for every n , Gn embeds in the projective plane.

Solution: The following figure shows an embedding of Gn on the projective
plane.

1



2

. . .

. . .

A1

A2

A3

A4

A1

A2

A3

A4

A2n−1

A2n

C1

C2

Cn A2n−1

A2n

a

a

3. Show that for every n , Gn embeds on the orientable surface of genus n .

Solution:The following figure shows an embedding of Gn on a surface with polyg-
onal scheme a1a2a3 . . . a2n−1a2n ā1ā2ā3 . . . ¯a2n−1 ¯a2n . This surface is orientable (no
edges of the polygonal scheme are identified with the same orientation), and
has 1 vertex, 1 face and 2n edges, thus its Euler characteristing is 2−2n and its
genus is n .

Henceforth, we assume that Gn is embedded on an orientable surface Sn of
genus g . The subgraph Kn is defined in Figure 2, and inherits an embedding on
Sn from the embedding of Gn .
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4. Show that if C1 bounds a face that is a disk, then S has genus at least n . Hint:
Compute the faces of Kn .

Solution: The graph Kn , being a minor of Gn , inherits naturally an embed-
ding on Sn from the embedding of Gn , in which C1 also bounds a face that
is a disk. Since all the vertices of Kn are on C1 and have degree 3, the fact
that C1 is a face forces the cyclic orderings of the edges A1, . . . A2n around the
vertices to be as in Figure 2, since they can not enter that disk. This embed-
ding has 6n edges and 4n vertices. For the faces, there is one inside the disk,
of boundary B1 . . . B2n D1 . . . D2n (with the notations of the picture below), and
following a boundary, we see that there is a single other one, of boundary
A1B1A2D2A3B3A4 . . . A2n−1B2n−1A2n D2n A1D2A2 . . . A2n B2n (without taking care of
the edge orientations). If the embedding is cellular, the Euler characteristic gives
g = n . Otherwise, adding edges to make it cellular only increases the genus, and
thus g ≥ n .
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5. Show that if C1 bounds a disk D (but not necessarily a face of the embedding),
then at most one of the radial arcs Ai is contained in that disk.

Solution: We view each arc as open, i.e., without its endpoints. Suppose w.l.g.
that A1 is contained in D . The endpoints of A1 cuts C1 into two arcs C ′ and C ′′.
By the Jordan curve theorem and more precisely by theta’s lemma, D is the union
of two components D ′ and D ′′ bounded by A1∪C ′ and A1∪C ′′ respectively. Since
for each i the endpoints of Ai are radially opposite it must have one endpoint
on C ′ and one on C ′′. Hence, if some Ai was contained in D it would intersect
the boundary of D ′, hence A1. This would contradict the hypothesis that Kn

embeds in Sn .

6. Deduce from the previous question that in the embedding of Gn on Sn , if C1

bounds a disk then this disk is a face.

Solution: Let D be the disk bounded by C1 and let Gn \C1 be the graph resulting
from the removal from Gn of the vertices of C1 and of their incident edges. Since
Gn \C1 is connected it follows from the Jordan curve theorem applied to an open
neighborhood of D that D contains either the whole of Gn \C1 or nothing. The
first case is impossible by the previous exercise, so that D is indeed empty.

7. Show that S2, and thus G2, have genus at least 2. Hint: If C1 bounds a disk, use
the previous questions. Otherwise, prove that G2 \C1 is not planar, for example by
finding a forbidden minor.

Solution: If C1 bounds a disk, then S2 has genus at least 2 according to Question
4. Otherwise, suppose by way of contradiction that G2 embeds in the torus.
Since C1 does not bound a disk it cuts this torus into a cylinder. In particular,
G2 \C1 embeds into the cylinder, hence is planar. However, G2 \C1 contains
C2 ∪ A1 ∪ A2 ∪ A3 as a subgraph, which is isomorphic to K3,3. This would thus
imply that K3,3 is planar, and we have reached a contradiction. We conclude that
S2 has genus at least 2.
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8. Show that Sn , and thus Gn , have genus at least n .

Solution: We argue by induction on n . The base case n = 2 is the subject of the
previous question. Suppose that for some n ≥ 2, Gn has genus at least n and
consider a cellular embedding of Gn+1 in some orientable surface Sn+1 (as we
saw in Question 1). If C1 bounds a disk in Sn+1, then, noting that Kn+1 is a minor
of Gn+1, we know from Question 4 that Sn+1 has genus at least n +1. Otherwise,
because Gn+1 \ C1 is connected and because the embedding is cellular, C1 is
non-separating in Sn . It follows that cutting Sn+1 through C1 decreases its genus
by one. Now Gn+1 \C1 embeds in Sn+1 \C1 and contains Gn as a minor. By the
induction hypothesis we conclude that Sn+1 \C1 has genus at least n , implying
that Sn+1 has genus at least n +1.

The family of graphs Gn shows that one cannot obtain the inequality from question
1 in the other direction, i.e., bound the orientable genus by the non-orientable one.
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Figure 1: The family of graphs Gn .
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Figure 2: The family of graphs Kn .


