CR13: Computational Topology Exercises \#4
 Due October 19th

1. Let G be a connected graph that is not a tree. Recall that the orientable (resp. non-orientable) genus $g(G)$ (resp. $\tilde{g}(G)$) of a graph is the smallest genus of an orientable (resp. non-orientable) surface on which it embeds. Show that they satisfy:

$$
\tilde{g}(G) \leq 2 g(G)+1 .
$$

Solution: Let S be a surface of minimal orientable genus on which G can be embedded. Then this embedding is cellular, for otherwise one could embed G on a surface of smaller genus by replacing the faces that are not disks with disks. Now, pick one of the disks of this cellular embedding, and replace it with a Möbius band. The resulting surface \tilde{S} is non-orientable (because it contains a Möbius band), and the embedding of G on \tilde{S} is non-cellular, but it can be made cellular by adding one edge, cutting the Möbius band into a single disk. Then, comparing the Euler characteristics of S and \tilde{S}, we obtain that $g(\tilde{S}) \leq 2 g(G)+1$, and thus $\tilde{g}(G) \leq 2 g(G)+1$.
Let G_{n} be the family of graphs in Figure 1. The A_{i} are edges that wrap around and identify opposite points.
2. Show that for every n, G_{n} embeds in the projective plane.

Solution: The following figure shows an embedding of G_{n} on the projective plane.

3. Show that for every n, G_{n} embeds on the orientable surface of genus n.

Solution:The following figure shows an embedding of G_{n} on a surface with polygonal scheme $a_{1} a_{2} a_{3} \ldots a_{2 n-1} a_{2 n} \bar{a}_{1} \bar{a}_{2} \bar{a}_{3} \ldots a_{2 n-1}^{-} \bar{a}_{2 n}^{-}$. This surface is orientable (no edges of the polygonal scheme are identified with the same orientation), and has 1 vertex, 1 face and $2 n$ edges, thus its Euler characteristing is $2-2 n$ and its genus is n.
Henceforth, we assume that G_{n} is embedded on an orientable surface S_{n} of genus g. The subgraph K_{n} is defined in Figure 2, and inherits an embedding on S_{n} from the embedding of G_{n}.

4. Show that if C_{1} bounds a face that is a disk, then S has genus at least n. Hint: Compute the faces of K_{n}.

Solution: The graph K_{n}, being a minor of G_{n}, inherits naturally an embedding on S_{n} from the embedding of G_{n}, in which C_{1} also bounds a face that is a disk. Since all the vertices of K_{n} are on C_{1} and have degree 3, the fact that C_{1} is a face forces the cyclic orderings of the edges $A_{1}, \ldots A_{2 n}$ around the vertices to be as in Figure 2, since they can not enter that disk. This embedding has $6 n$ edges and $4 n$ vertices. For the faces, there is one inside the disk, of boundary $B_{1} \ldots B_{2 n} D_{1} \ldots D_{2 n}$ (with the notations of the picture below), and following a boundary, we see that there is a single other one, of boundary $A_{1} B_{1} A_{2} D_{2} A_{3} B_{3} A_{4} \ldots A_{2 n-1} B_{2 n-1} A_{2 n} D_{2 n} A_{1} D_{2} A_{2} \ldots A_{2 n} B_{2 n}$ (without taking care of the edge orientations). If the embedding is cellular, the Euler characteristic gives $g=n$. Otherwise, adding edges to make it cellular only increases the genus, and thus $g \geq n$.

5. Show that if C_{1} bounds a disk D (but not necessarily a face of the embedding), then at most one of the radial arcs A_{i} is contained in that disk.

Solution: We view each arc as open, i.e., without its endpoints. Suppose w.l.g. that A_{1} is contained in D. The endpoints of A_{1} cuts C_{1} into two arcs C^{\prime} and $C^{\prime \prime}$. By the Jordan curve theorem and more precisely by theta's lemma, D is the union of two components D^{\prime} and $D^{\prime \prime}$ bounded by $A_{1} \cup C^{\prime}$ and $A_{1} \cup C^{\prime \prime}$ respectively. Since for each i the endpoints of A_{i} are radially opposite it must have one endpoint on C^{\prime} and one on $C^{\prime \prime}$. Hence, if some A_{i} was contained in D it would intersect the boundary of D^{\prime}, hence A_{1}. This would contradict the hypothesis that K_{n} embeds in S_{n}.
6. Deduce from the previous question that in the embedding of G_{n} on S_{n}, if C_{1} bounds a disk then this disk is a face.

Solution: Let D be the disk bounded by C_{1} and let $G_{n} \backslash C_{1}$ be the graph resulting from the removal from G_{n} of the vertices of C_{1} and of their incident edges. Since $G_{n} \backslash C_{1}$ is connected it follows from the Jordan curve theorem applied to an open neighborhood of D that D contains either the whole of $G_{n} \backslash C_{1}$ or nothing. The first case is impossible by the previous exercise, so that D is indeed empty.
7. Show that S_{2}, and thus G_{2}, have genus at least 2. Hint: If C_{1} bounds a disk, use the previous questions. Otherwise, prove that $G_{2} \backslash C_{1}$ is not planar, for example by finding a forbidden minor.

Solution: If C_{1} bounds a disk, then S_{2} has genus at least 2 according to Question 4. Otherwise, suppose by way of contradiction that G_{2} embeds in the torus. Since C_{1} does not bound a disk it cuts this torus into a cylinder. In particular, $G_{2} \backslash C_{1}$ embeds into the cylinder, hence is planar. However, $G_{2} \backslash C_{1}$ contains $C_{2} \cup A_{1} \cup A_{2} \cup A_{3}$ as a subgraph, which is isomorphic to $K_{3,3}$. This would thus imply that $K_{3,3}$ is planar, and we have reached a contradiction. We conclude that S_{2} has genus at least 2.
8. Show that S_{n}, and thus G_{n}, have genus at least n.

Solution: We argue by induction on n. The base case $n=2$ is the subject of the previous question. Suppose that for some $n \geq 2, G_{n}$ has genus at least n and consider a cellular embedding of G_{n+1} in some orientable surface S_{n+1} (as we saw in Question 1). If C_{1} bounds a disk in S_{n+1}, then, noting that K_{n+1} is a minor of G_{n+1}, we know from Question 4 that S_{n+1} has genus at least $n+1$. Otherwise, because $G_{n+1} \backslash C_{1}$ is connected and because the embedding is cellular, C_{1} is non-separating in S_{n}. It follows that cutting S_{n+1} through C_{1} decreases its genus by one. Now $G_{n+1} \backslash C_{1}$ embeds in $S_{n+1} \backslash C_{1}$ and contains G_{n} as a minor. By the induction hypothesis we conclude that $S_{n+1} \backslash C_{1}$ has genus at least n, implying that S_{n+1} has genus at least $n+1$.

The family of graphs G_{n} shows that one cannot obtain the inequality from question 1 in the other direction, i.e., bound the orientable genus by the non-orientable one.

Figure 1: The family of graphs G_{n}.

Figure 2: The family of graphs K_{n}.

