CR13: Computational Topology Exercises #4 Due October 19th

1. Let *G* be a connected graph that is not a tree. Recall that the orientable (resp. non-orientable) genus g(G) (resp. $\tilde{g}(G)$) of a graph is the smallest genus of an orientable (resp. non-orientable) surface on which it embeds. Show that they satisfy:

$$\tilde{g}(G) \le 2g(G) + 1.$$

Solution: Let *S* be a surface of minimal orientable genus on which *G* can be embedded. Then this embedding is cellular, for otherwise one could embed *G* on a surface of smaller genus by replacing the faces that are not disks with disks. Now, pick one of the disks of this cellular embedding, and replace it with a Möbius band. The resulting surface \tilde{S} is non-orientable (because it contains a Möbius band), and the embedding of *G* on \tilde{S} is non-cellular, but it can be made cellular by adding one edge, cutting the Möbius band into a single disk. Then, comparing the Euler characteristics of *S* and \tilde{S} , we obtain that $g(\tilde{S}) \leq 2g(G) + 1$, and thus $\tilde{g}(G) \leq 2g(G) + 1$.

Let G_n be the family of graphs in Figure 1. The A_i are edges that wrap around and identify opposite points.

2. Show that for every n, G_n embeds in the projective plane.

Solution: The following figure shows an embedding of G_n on the projective plane.

3. Show that for every n, G_n embeds on the orientable surface of genus n.

*Solution:*The following figure shows an embedding of G_n on a surface with polygonal scheme $a_1a_2a_3...a_{2n-1}a_{2n}\bar{a_1}\bar{a_2}\bar{a_3}...a_{2n-1}\bar{a_{2n}}$. This surface is orientable (no edges of the polygonal scheme are identified with the same orientation), and has 1 vertex, 1 face and 2n edges, thus its Euler characteristing is 2-2n and its genus is n.

Henceforth, we assume that G_n is embedded on an orientable surface S_n of genus g. The subgraph K_n is defined in Figure 2, and inherits an embedding on S_n from the embedding of G_n .

4. Show that if C_1 bounds a face that is a disk, then *S* has genus at least *n*. *Hint: Compute the faces of* K_n .

Solution: The graph K_n , being a minor of G_n , inherits naturally an embedding on S_n from the embedding of G_n , in which C_1 also bounds a face that is a disk. Since all the vertices of K_n are on C_1 and have degree 3, the fact that C_1 is a face forces the cyclic orderings of the edges A_1, \ldots, A_{2n} around the vertices to be as in Figure 2, since they can not enter that disk. This embedding has 6n edges and 4n vertices. For the faces, there is one inside the disk, of boundary $B_1 \ldots B_{2n} D_1 \ldots D_{2n}$ (with the notations of the picture below), and following a boundary, we see that there is a single other one, of boundary $A_1B_1A_2D_2A_3B_3A_4 \ldots A_{2n-1}B_{2n-1}A_{2n}D_2A_1D_2A_2 \ldots A_{2n}B_{2n}$ (without taking care of the edge orientations). If the embedding is cellular, the Euler characteristic gives g = n. Otherwise, adding edges to make it cellular only increases the genus, and thus $g \ge n$.

5. Show that if C_1 bounds a disk D (but not necessarily a face of the embedding), then at most one of the radial arcs A_i is contained in that disk.

Solution: We view each arc as open, i.e., without its endpoints. Suppose w.l.g. that A_1 is contained in D. The endpoints of A_1 cuts C_1 into two arcs C' and C''. By the Jordan curve theorem and more precisely by theta's lemma, D is the union of two components D' and D'' bounded by $A_1 \cup C'$ and $A_1 \cup C''$ respectively. Since for each i the endpoints of A_i are radially opposite it must have one endpoint on C' and one on C''. Hence, if some A_i was contained in D it would intersect the boundary of D', hence A_1 . This would contradict the hypothesis that K_n embeds in S_n .

6. Deduce from the previous question that in the embedding of G_n on S_n , if C_1 bounds a disk then this disk is a face.

Solution: Let *D* be the disk bounded by C_1 and let $G_n \setminus C_1$ be the graph resulting from the removal from G_n of the vertices of C_1 and of their incident edges. Since $G_n \setminus C_1$ is connected it follows from the Jordan curve theorem applied to an open neighborhood of *D* that *D* contains either the whole of $G_n \setminus C_1$ or nothing. The first case is impossible by the previous exercise, so that *D* is indeed empty.

7. Show that S_2 , and thus G_2 , have genus at least 2. *Hint: If* C_1 *bounds a disk, use the previous questions. Otherwise, prove that* $G_2 \setminus C_1$ *is not planar, for example by finding a forbidden minor.*

Solution: If C_1 bounds a disk, then S_2 has genus at least 2 according to Question 4. Otherwise, suppose by way of contradiction that G_2 embeds in the torus. Since C_1 does not bound a disk it cuts this torus into a cylinder. In particular, $G_2 \setminus C_1$ embeds into the cylinder, hence is planar. However, $G_2 \setminus C_1$ contains $C_2 \cup A_1 \cup A_2 \cup A_3$ as a subgraph, which is isomorphic to $K_{3,3}$. This would thus imply that $K_{3,3}$ is planar, and we have reached a contradiction. We conclude that S_2 has genus at least 2. 8. Show that S_n , and thus G_n , have genus at least n.

Solution: We argue by induction on n. The base case n = 2 is the subject of the previous question. Suppose that for some $n \ge 2$, G_n has genus at least n and consider a cellular embedding of G_{n+1} in some orientable surface S_{n+1} (as we saw in Question 1). If C_1 bounds a disk in S_{n+1} , then, noting that K_{n+1} is a minor of G_{n+1} , we know from Question 4 that S_{n+1} has genus at least n + 1. Otherwise, because $G_{n+1} \setminus C_1$ is connected and because the embedding is cellular, C_1 is non-separating in S_n . It follows that cutting S_{n+1} through C_1 decreases its genus by one. Now $G_{n+1} \setminus C_1$ embeds in $S_{n+1} \setminus C_1$ and contains G_n as a minor. By the induction hypothesis we conclude that $S_{n+1} \setminus C_1$ has genus at least n, implying that S_{n+1} has genus at least n + 1.

The family of graphs G_n shows that one cannot obtain the inequality from question 1 in the other direction, i.e., bound the orientable genus by the non-orientable one.

Figure 1: The family of graphs G_n .

Figure 2: The family of graphs K_n .