CR13: Computational Topology Exercises \#2

1. Let C be the 1 -skeleton of a three dimensional cube, i.e., the graph formed by its vertices and edges. Prove that C is 3 -connected.
Let e be one of the four diagonals of the cube. Deduce from the preceding question that the graph $C+e$, obtained by adding edge e to C, is not planar.
Give two other proofs of the nonplanarity of $C+e$.
2. Let G be a 3-connected graph with at least 6 vertices. Suppose that G contains a subdivision K of the complete graph K_{5}. Every edge of K_{5} corresponds to a path in K which we call a branch.
If K contains a vertex of degree two (in K), show that G contains a path whose interior is disjoint from K and that joins a vertex interior to some branch B in K to a vertex in another branch B^{\prime}. This vertex may be an endpoint of B^{\prime}, but not an endpoint of B.
Deduce that every 3-connected nonplanar graph with at least 6 vertices contains a subdivision of $K_{3,3}$.
