CR13: Computational Topology Exercises #4 Due October 19th

1. Let *G* be a connected graph that is not a tree. Recall that the orientable (resp. non-orientable) genus g(G) (resp. $\tilde{g}(G)$) of a graph is the smallest genus of an orientable (resp. non-orientable) surface on which it embeds. Show that they satisfy:

$$\tilde{g}(G) \le 2g(G) + 1.$$

Let G_n be the family of graphs in Figure 1. The A_i are edges that wrap around and identify opposite points.

- 2. Show that for every n, G_n embeds in the projective plane.
- 3. Show that for every n, G_n embeds on the orientable surface of genus n.

Henceforth, we assume that G_n is embedded on an orientable surface S_n of genus g. The subgraph K_n is defined in Figure 2, and inherits an embedding on S_n from the embedding of G_n .

- 4. Show that if C_1 bounds a face that is a disk, then *S* has genus at least *n*. *Hint: Compute the faces of* K_n .
- 5. Show that if C_1 bounds a disk D (but not necessarily a face of the embedding), then at most one of the radial arcs A_i is contained in that disk.
- 6. Deduce from the previous question that in the embedding of G_n on S_n , if C_1 bounds a disk then this disk is a face.
- 7. Show that S_2 , and thus G_2 , have genus at least 2. *Hint: If* C_1 *bounds a disk, use the previous questions. Otherwise, prove that* $G_2 \setminus C_1$ *is not planar, for example by finding a forbidden minor.*
- 8. Show that S_n , and thus G_n , have genus at least n.

The family of graphs G_n shows that one cannot obtain the inequality from question 1 in the other direction, i.e., bound the orientable genus by the non-orientable one.

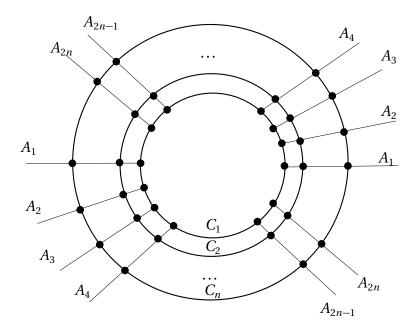


Figure 1: The family of graphs G_n .

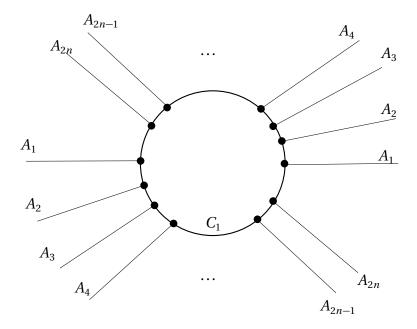


Figure 2: The family of graphs K_n .