CR13: Computational Topology Exercises \#5

1. Let G be the group $<a, b \mid a^{4}, b^{2} a^{-2}, a b a b^{-1}>$. Show that $a b a^{3} b=1$, that a and b are distinct and non-trivial and that a and a^{-1} are conjugate.
2. Show that the groups $G=<x, y \mid x^{3}, y^{2},(x y)^{2}>$ and $G^{\prime}=<y, z \mid(z y)^{3}, y^{2}, z^{2}>$ are isomorphic. Can you recognize that group?
3. Let G be the group $<x, y \mid x^{5}, y^{3}, y x y^{-1} x^{-3}>$. How many elements does G have? Hint: It's not 15 .
4. Let T be a torus, and recall that its fundamental group is $\pi_{1}(T)=\mathbb{Z}^{2}$. A closed curve on the torus is simple if it has no self-intersections. Show that an element $(p, q) \in \pi_{1}(T)$ can be represented by a simple closed curve if and only if p and q are relatively prime. Hint: Look at the curves in the universal cover of the torus.
