## Algorithmic Topology and Groups Exercises #3

1. Let p: Flower<sub>5</sub>  $\rightarrow$   $B_2$  be the covering represented in the following Figure.



Call *a* the lower loop edge of  $B_2$ . On what condition related to *a* does a loop of  $B_2$  lift to a loop in Flower<sub>5</sub>? Deduce that for any vertex *v* of Flower<sub>5</sub>, we have  $p_*\pi_1(\text{Flower}_n, v) \triangleleft \pi_1(B_2)$ , i.e.  $\pi_1(\text{Flower}_n, v)$  is normal in  $\pi_1(B_2)$ . What is the quotient group? Justify your answer in two different ways.

2. Let *f* be a morphism from the covering  $p : H \to G$  to the covering  $q : K \to G$ . Consider a vertex *v* in *H* and a path  $\alpha$  in *G* with initial vertex p(v). Show the identity

$$f(v).\alpha = f(v.\alpha)$$

3. Show that a covering morphism



nected, must be the identity.

- 4. Consider the Petersen graph P = P(5,2) (see Exercise sheet #2). Let r be the autmorphism of P acting on  $C_1(5)$  by a one-shift (vertex i is sent to vertex i + 1). What is the quotient graph  $P/\langle r \rangle$ ? Can you obtain the same quotient graph as a quotient of the graph (1-skeleton) of the 3 dimensional cube?
- 5. Give a characterisation of the embedding of  $\pi_1(P)$  induced by the quotient in the previous exercise.
- 6. Prove that there exists a free action of  $\mathbb{Z}/n\mathbb{Z}$  on the complete graph  $K_n$  if and only if *n* is odd. What is the quotient graph for n = 5? Give a characterisation of the corresponding embedding of  $\pi_1(K_5)$  in the fundamental group of the quotient.
- 7. Give an example of a graph morphism between connected graphs whose edge or vertex fibers all have the same size though the morphism is not a covering.