Algorithmic Topology and Groups Exercises #6

1. Let $G = \langle S | R \rangle$ be a group presentation and let *r* be a word in *S* that is a consequence of *R*, *i.e.* such that $r =_G 1$. Show that *r* is freely equivalent (*i.e.*, inserting or removing ss^{-1} or $s^{-1}s$ factors) to a word of the form

$$\prod_{j=1}^k g_j r_j^{\varepsilon_j} g_j^{-1},$$

where the g_i are words over *S*, $r_i \in R$, and $\varepsilon_i \in \{-1, 1\}$.

- 2. Recall that a Tietze transformation on a group presentation $G = \langle S | R \rangle$ may either add a relation which is a consequence of *R* or add a new generator *s* with a new relation *s w*, where *w* is any word over *S*. Show that the Tietze transformations indeed produce isomorphic groups.
- Let G = ⟨X | R⟩, H = ⟨Y | T⟩ be group presentations and let φ : A → G and ψ : A → H be group embeddings. The **free product with amalgamation** of G and H with respect to φ and ψ is the pushout of the diagram G → A → H. It is denoted by G ★_{φ=ψ} H.

Show that for any set *S* of generators of *A*, $G \star_{\varphi=\psi} H$ has presentation

$$\langle X \cup Y \mid R \cup T \cup \{\varphi(s)(\psi(s))^{-1}\}_{s \in S} \rangle$$

4. Seifert–van Kampen theorem for surfaces. Let M_1, M_2 be connected finite maps with boundary (*i.e.* having perforated faces). Suppose that B_1, B_2 are perforated faces of M_1, M_2 , respectively, with simple and isomorphic facial circuits ∂B_i , i = 1, 2. Let $v_1 \in \partial B_1$ and $v_2 \in \partial B_2$ be corresponding vertices under this isomorphism. Consider the map $M = M_1 + M_2$ obtained by identifying ∂B_1 and ∂B_2 according to this isomorphism. Also consider the group morphisms $\varphi_i : \mathbb{Z} \to \pi_1(M_i, v_i), 1 \mapsto [\partial B_i]$. Show that

$$\pi_1(M, v) \simeq \pi_1(M_1, v_1) \star_{\varphi_1 = \varphi_2} \pi_1(M_1, v_2)$$

where v results from the identification of v_1 and v_2 . (Hint: you may start with adapted presentations of $\pi_1(M_i, v_i)$.)

- 5. Show that the groups $G = \langle x, y | x^3, y^2, (xy)^2 \rangle$ and $G' = \langle y, z | (zy)^3, y^2, z^2 \rangle$ are isomorphic. Can you recognize that group?
- 6. Let *G* be the group $\langle x, y | x^5, y^3, y x y^{-1} x^{-3} \rangle$. How many elements does *G* have? *Hint: It's not 15.*