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0.1 Topology.

Topology deals with the study of spaces. One of its goals is to answer the following
broad class of questions:

“Are these two spaces the same?”

This naturally leads to the following subquestions:

• What is a space? General topology typically defines topological spaces via open
and closed sets. In order to avoid pathological examples, and with an eye towards
applications, we will take a more concrete approach1: in this course, topological
spaces will be obtained in the form of complexes, that is, by gluing together
fundamental blocks. For example, gluing segments yields a graph, while by
gluing together triangles one can obtain a surface (or something more compli-
cated). The usual notions of distance on these fundamental blocks naturally
induce a notion of proximity on such a complex, and therefore a topology whose
properties are convenient to understand geometrically.

• What is “the same” ? It very much depends on the context. The most common
equivalence relation is homeomorphism, which is a continuous map with a
continuous inverse function. But in some contexts, when a space is embedded
in another space, one will be interested in distinguishing between different
embeddings. There, a convenient notion is isotopy : two embedded spaces will
be considered the same if one can deform continuously one into the other one.

Let us look at examples.

1This is by no means original: see introductory textbooks on algebraic topology, for example
Hatcher [Hat02] or Stillwell [Sti12].
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Example 1: By gluing triangles or quadrilaterals, one can easily obtain a sphere (left
figure), or a torus (right figure).

Are these two spaces homeomorphic? Obviously not: the torus has a hole. But
what is a hole? Two naive answers will guide us to the two fundamental constructs of
algebraic topology:

• Homotopy: On the sphere, every closed curve can be deformed into a single
point. While on the torus, a curve going around the hole can not. Such a curve
is not homotopic to a point.

• Homology: On the sphere, every closed curve separates the sphere into two
regions. While on the torus, a curve going around the hole is not separating.
Such a curve is not trivial in homology.

These intuitions can be formalized into algebraic objects which will constitute
invariants (actually, functors) that one can use to distinguish topological spaces.

Example 2: By gluing segments in R3, one can obtain the following knots.

Are they homeomorphic? Certainly: they are both homeomorphic to the circle S1.
But are they isotopic: can one be deformed into the other without crossing itself? The
answer is negative, but this is not that easy to prove. One way to see it is that the knot
on the left bounds a disk, while the one on the right does not. Studying which surfaces
one can find in a 3-dimensional space is the goal of normal surface theory.

0.2 Computational Topology.

Computational topology deals with effective computations on topological spaces.
The main question now becomes:

“How to compute whether these two spaces are the same?”
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Note that since we study spaces described by gluings of fundamental blocks, in
most instances this can be made into a well-defined algorithmic problem, with a finite
input. One can then wonder about the complexity of this problem, and aim to design
the most efficient algorithm, or conversely prove hardness results. Throughout the
course, we will investigate the complexity of various instances of this question, with
practical algorithms computing homeomorphism, homotopy, homology or isotopy
for example.

Outline. We will work by increasing progressively the dimension, and thus the com-
plexity of the objects we consider.

1. We start with one of the simplest topological spaces : the plane R2. Describing
it as a union of small blocks amounts to the study of planar graphs. This topo-
logical constraint on graphs has a strong impact on their combinatorics, which
we will study through various angles.

2. Next come surfaces, which look locally like the plane. From a mathematical
point of view, these are still fairly simple, as they can be easily classified. But
once again, there is a very fruitful interplay between the topology of surfaces and
the combinatorics of embedded graphs. Moreover, surfaces are a convenient
and easy framework to introduce homotopy and homology and we will present
efficient algorithms for the computation of these invariants.

3. In dimension 3, we will introduce knots and 3-manifolds. Distinguishing vari-
ous knots is hard: the whole field of knot theory is dedicated to this. We will see
through various examples why this is hard, and will introduce normal surface
theory, one of the main tools used for computational problems in 3 dimensions.
As an application, we will use it to provide an algorithm to recognize trivial knots
in NP.

4. As soon as we hit dimension 4, we start to hit the limits of computational topol-
ogy: many problems are not only hard, they are undecidable. We will introduce
simplicial complexes, which are the main model for high-dimensional topo-
logical spaces, and show that deciding homeomorphism of such complexes is
already undecidable in dimension 4, as is testing the homotopy of curves in
2-dimensional complexes.

5. Although computing homotopy and homeomorphism quickly becomes intractable
in high dimensions, homology does not: its simple algebraic structure allows
for efficient computations that scale well with the dimension. This can be lever-
aged as a tool for big data: the techniques of topological data analysis aim at
recognizing topological features in point clouds by computing their persistent
homology. As we shall see, this is a surprisingly powerful way to infer informa-
tion from a structured point cloud.

Applications. The approach in this course is to focus on the mathematical motiva-
tions to study topological objects and their computation. This does not mean that this
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is all devoid of applications. Quite the contrary: topological spaces are ubiquitous in
computer science, and the primitives we develop here have practical implications in
computer graphics [LGQ09], mesh processing [GW01], robotics [Far08], combinatorial
optimization (see references in [Eri12]), machine learning [ACC12], and many other
fields. Believe it or not, they even revolutionized basketball [Bec12]!
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