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A graph is planar if it can be drawn on a sheet of paper so that no two edges inter-
sect, except at common endpoints. This simple property not only allows to visualize
planar graphs easily, but implies many nice properties. Planar graphs are sparse: they
have a linear number of edges with respect to their number of vertices (specifically a
simple planar graph with n vertices has at most 3n −6 edges), they are 4-colorable,
they can be encoded efficiently, etc. Classical examples of planar graphs include the
graphs formed by the vertices and edges of the five Platonic polyhedra, and in fact of
any convex polyhedron. Although being planar is a topological property, planar graphs
have purely combinatorial characterizations. Such characterizations may lead to effi-
cient algorithms for planarity testing or, more surprisingly, for geometric embedding
(=drawing).

In the first part of this lecture we shall deduce the combinatorial characterizations
of planar graphs from their topological definition. That we can get rid of topological
considerations should not be surprising. It is actually possible to develop a combinato-
rial theory of surfaces where a drawing of a graph is defined by a circular ordering of its
edges around each vertex. The collection of these circular orderings is called a rotation
system. A rotation system is thus described combinatorially by a single permutation
over the (half-)edges of a graph; the cycle decomposition of the permutation induces
the circular orderings around each vertex. The topology of the surface corresponding
to a rotation system can be deduced from the computation of its Euler characteristic.
Being planar then reduces to the existence of a rotation system with the appropriate
Euler characteristic.
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The following notes are largely inspired by the monographs of Mohar and Thomassen
[MT01] and of Diestel [Die05].

1 Topology

A graph G = (V , E ) is defined by a set V =V (G ) of vertices and a set E = E (G ) of edges
where each edge is associated one or two vertices, called its endpoints. A loop is an
edge with a single endpoint. Edges sharing the same endpoints are said parallel and
define a multiple edge. A graph without loops or multiple edges is said simple or
simplicial. In a simple graph every edge is identified unambiguously with the pair of
its endpoints. Edges should be formally considered as pairs of oppositely oriented arcs.
A path is an alternating sequence of vertices and arcs such that every arc is preceded
by its origin vertex and followed by the origin of its opposite arc. A path may have
repeated vertices (beware that this is not standard, and usually called a walk in graph
theory books). Two or more paths are independent if none contains an inner vertex
of another. A circuit is a closed path, i.e. a path whose first and last vertex coincide. A
cycle is a simple circuit (without repeated vertices). We will restrict to finite graphs for
which V and E are finite sets.

The Euclidean distance in the plane R2 induces the usual topology where a subset
X ⊂R2 is open if every of its points is contained in a ball that is itself included in X .

The closure X̄ of X is the set of limit points of sequences of points of X . The interior
◦

X
of X is the union of the open balls contained in X . An embedding of a non-loop edge
in the plane is just a topological embedding (a homeomorphism onto its image) of
the segment [0, 1] into R2. Likewise, an embedding of a loop-edge is an embedding of
the circle S 1 =R/Z. An embedding of a finite graph G = (V , E ) in the plane is defined
by a 1-1 map V ,→R2 and, for each edge e ∈ E , by an embedding of e sending {0, 1} to
e ’s endpoints such that the relative interior of e (the image of ]0,1[) is disjoint from
other edge embeddings and vertices1.

A graph is planar if it has an embedding into the plane. Thanks to the stereographic
projection, the plane can be equivalently replaced by the sphere. A plane graph is a
specific embedding of a planar graph. A connected plane graph in the plane has a
single unbounded face. In contrast, all the faces play the same role in an embedding
into the sphere and any face can be sent to the unbounded face of a plane embedding
by a stereographic projection.

As far as planarity is concerned we can restrict to simple graphs. Indeed, it is easily
seen that a graph has an embedding in the plane if and only if this is the case for the
graph obtained by removing loop edges and replacing each multiple edge by a single
edge. When each edge embedding [0,1]→ R2 is piecewise linear the embedding is
said PL, or polygonal. A straight line embedding corresponds to the case where each
edge is a line segment.

Lemma 1.1. A graph is planar if and only if it admits a PL embedding.

1In other words, this is a topological embedding of the quotient space (V t [0,1]×E )/∼, where ∼
identifies edge extremities (0, e ) and (1, e )with the corresponding vertices.
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The proof is left as an exercise. One can first show that a connected subset of the
plane is connected by simple PL arcs.

1.1 The Jordan Curve Theorem

Most of the facts about planar graphs ultimately relies on the Jordan curve theorem,
one of the most emblematic results in topology. Its statement is intuitively obvious: a
simple closed curves cuts the plane into two connected parts. Its proof is nonethe-
less far from obvious, unless one appeals to more advanced arguments of algebraic
topology. Camille Jordan (1838 – 1922) himself proposed a proof whose validity is
still subject of debates [Hal07b]. A rather accessible proof was proposed by Helge
Tverberg [Tve80] (see the course notes [Laz12] for a gentle introduction). Eventually, a
formal proof was given by Thomas Hales (and other mathematicians) [Hal07b, Hal07a]
and was automatically checked by a computer. Concerning the Jordan-Schoenflies
theorem, the situation is even worse. This stronger version of the Jordan curve the-
orem asserts that a simple curve does not only cut a sphere into two pieces but that
each piece is actually a topological disc. A nice proof by elementary means – but
far from simple – and resorting to the fact that K3,3 is not planar is due to Carsten
Thomassen [Tho92].

The main source of difficulties in the proof of the Jordan curve theorem is that a
continuous curve can be quite wild, e.g. fractal. When dealing with PL curves only,
the theorem becomes much easier to prove.

Theorem 1.2 (Polygonal Jordan curve — ). Let C be a simple closed PL curve. Its
complementR2 \C has two connected components, one of which is bounded and each
of which has C as boundary.

PROOF. Since C is contained in a compact ball, its complement has exactly one
unbounded component. Define the horizontal rightward direction ~h as some fixed
direction transverse to the all the line segments of C . For every segment s of C we let
s be the lower half-open segment obtained from s by removing its upper endpoint.
We also denote by hp the ray with direction ~h starting at a point p ∈R2. We consider
the parity function π :R2 \C →{ even, odd } that counts the parity of the number of
lower half-open segments of C intersected by a ray:

π(p ) := parity of
�

�{ segment s of C | hp ∩ s 6= ;}
�

�

Every p ∈R2 \C is the center of small disk Dp over which π is constant. Indeed, let Sp

be the set of segments (of C ) that avoid hp , let S ′p be the set of segments whose interior
crosses hp and let S ′′p be the set of segments whose lower endpoint lies on hp . If Dp

is sufficiently small, then for every q ∈Dp we have Sq = Sp , S ′q = S ′p and the parity of
|S ′′q | and |S ′′p | is the same. See Figure 1. It follows that π(q ) = π(p ). Since π is locally

constant, it must be constant over each connected component ofR2 \C . Moreover,
the parity function must take distinct values on points close to C that lie on a same
horizontal but on each side of C . It follows that R2 \C has at least two components.
To see that R2 \C has at most two components consider a small disk D centered at a
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Figure 1: The horizontal ray through p cuts the five lower half-open segments
s 2, s 3, s 4, s 5, s 6. Here, we have s1 ∈ Sp , s4, s5 ∈ S ′p and s2, s3, s6 ∈ S ′′p .

point interior to a segment s of C . Then D \C =D \ s has two components. Moreover,
any point inR2 \C can be joined to one of these components by a polygonal path that
avoids C : first come close to C with a straight line and then follow C in parallel until
D is reached. Finally, it is easily seen by similar arguments as above that every point
of C is in the closure of both components of R2 \C .

Corollary 1.3 (θ ’s lemma). Let C1, C2, C3 be three simple PL paths with the same end-
points p , q and otherwise disjoint. The graph G =C1 ∪C2 ∪C3 has three faces bounded
by C1 ∪C2, C2 ∪C3 and C3 ∪C1, respectively.

PROOF. From the Jordan curve theorem the three simple closed curves Gk =Ci ∪C j ,
{i , j , k} = {1,2,3}, cut the plane into two components bounded by Gk . We let Xk

and Yk be respectively the bounded and unbounded component. We also denote by
◦

Ci :=Ci \ {p , q } the relative interior of Ci . We first remark that a simple PL path cuts an
open connected subset of the plane into at most two components: as in the proof of
the Jordan curve theorem we can first come close to the path and follow it until a small

fixed disk is reached. Since
◦

C3 is included in a face of G3, we deduce that G =G3∪
◦

C3

has at most three faces.
We claim that

◦
Ci⊂ X i for at least one index i ∈ {1,2,3}. Otherwise we would have

Ci ⊂ ûX i , whence G ⊂ ûX i , or equivalently X i ⊂ ûG . So, X i would be a face of G . Since

the X i ’s are pairwise distinct (note that Ci ⊂ X̄ j while
◦

Ci 6⊂ X̄ i ), we would infer that G
has at least three bounded faces, hence at least four faces. This would contradict the

first part of the proof. Without loss of generality we now assume
◦

C3⊂ X3.
From G =G1 ∪G2 we get that each face of G is a component of the intersection of

a face of G1 with a face of G2. From G3 ⊂G ⊂ ûY3 we get that Y3 is a face of G . Since Y3

is unbounded we must have Y3 ⊂ Y1 ∩Y2.
Now, C1 ⊂ Ȳ3 ⊂ Ȳ1 = ûX1 implies G =G1 ∪C1 ⊂ ûX1. It follows that X1 is a face of G .

Likewise, X2 is a face of G . Moreover, these two faces are distinct (C1 bounds X1 but
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not X2). We conclude that Y3, X1 and X2 are the three faces of G .

1.2 Euler’s Formula

The famous formula relating the number of vertices, edges and faces of a plane graph
is credited to Leonhard Euler (1707-1783) although René Descartes had already de-
duced very close relations for the graph of a convex polyhedron. See the histori-
cal account of R. J. Wilson in [Jam99, Sec. 17.3] and in J. Erickson’s course notes
http://jeffe.cs.illinois.edu/teaching/topology17/chapters/02-planar-graphs.pdf

Recall that a graph G is 2-connected if it contains at least three vertices and if
removing any one of its vertices leaves a connected graph. If G is 2-connected, it can
be constructed by iteratively adding paths to a cycle. In other words, there must be a
sequence of graphs G0,G1, . . . ,Gk =G such that G0 is a cycle and Gi is deduced from
Gi−1 by attaching a simple path between two distinct vertices of Gi−1.

Proposition 1.4. Each face of a 2-connected PL plane graph is bounded by a cycle of
the graph. Moreover, each edge is incident to (= is in the closure of) exactly two faces.

PROOF. Let G be a 2-connected PL plane graph. Consider the sequence G0,G1, . . . ,
Gk =G as above. We prove the proposition by induction on k . If k = 0, then G is a
cycle and the proposition reduces to the Jordan curve theorem 1.2. Otherwise, by the
induction hypothesis Gk−1 satisfies the proposition. Let P be the attached path such
that G =Gk−1∪P . The relative interior of P must be contained in a face f of Gk−1. This
face is bounded by a cycle C of Gk−1. We can now apply θ ’s lemma 1.3 to C ∪P and
conclude that f is cut by G into two faces bounded by the cycles C1 ∪P and C2 ∪P ,
where C1, C2 are the subpaths of C cut by the endpoints of P . Moreover all the other
faces of Gk−1 are faces of G bounded by the same cycles. It easily follows that the edges
of G are each incident to exactly two faces.

Lemma 1.5. Let G be a PL plane graph. If v is a vertex of degree one in G then G − v
and G have the same number of faces.

PROOF. We denote by e the edge incident to v in G . Every face of G is contained in
a face of G − v . Moreover, the relative interior of (the embedding of) e is contained
in a face f of G − v . Hence, every other face of G − v is also a face of G . It remains
to count the number of faces of G in f . Let p , p ′ be two points in f \ e . There is a
PL path in f connecting p and p ′. This path may intersect e , but we may avoid this
intersection by considering a detour in a small neighborhood Ne of e in f (indeed,
Ne \ e is connected). It follows that p and p ′ belong to a same component of f \ e . We
conclude that G has only one face in f , so that G and G − v have the same number of
faces.

Theorem 1.6 (Euler’s formula). Let |V |, |E | and |F | be the number of vertices, edges and
faces of a connected plane graph G . Then,

|V | − |E |+ |F |= 2

http://jeffe.cs.illinois.edu/teaching/topology17/chapters/02-planar-graphs.pdf
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PROOF. We argue by induction on |E |. If G has no edges then it has a single vertex
and the above formula is trivial. Otherwise, suppose that G has a vertex v of degree
one. Then by Lemma 1.5, G has the same number of faces as G − v . Note that G has
one vertex more and one edge more than G − v . By the induction hypothesis we can
apply Euler’s formula to G − v , from which we immediately infer the validity of Euler’s
formula for G . If every vertex of G has degree at least two, then G contains a cycle C .
Let e be an edge of C . We claim that G has one face more than G −e . This will allow to
conclude the theorem by applying Euler’s formula to G −e , noting that G has the same
number of vertices but one edge less than G − e . By the Jordan curve theorem 1.2,
C cuts the plane into two faces (components) bounded by C . Since G =C ∪ (G − e ),
every face of G is included in the intersection of a face of C and a face of G − e . Let
f be the face of G − e containing the relative interior of e . Every other face of G − e
does not meet C , hence is also a face of G . Since f intersects the two faces of C (both
bounded by e ), G has at least one face more than G −e . By considering a small tubular
neighborhood of e in f , one shows by an already seen argument that f \ e has at most
two components. It follows that f contains exactly two faces of G , which concludes
the claim.

Application. Two old puzzles that go back at least to the nineteenth century are
related to planarity and can be solved using Euler’s formula. The first asks whether it
is possible to divide a kingdom into five regions so that each region shares a frontier
line with each of the four other regions. The second puzzle, sometimes called the gaz-
water-electricity problem requires to join three houses to three gaz, water and electricity
facilities using pipes so that no two pipes cross. By duality, the first puzzle translates
to the question of the planarity of the complete graph K5 obtained by connecting
five vertices in all possible ways. The second problem reduces to the planarity of
the complete bipartite graph K3,3 obtained by connecting each of three independent
vertices to each of three other independent vertices. It appears that these two puzzles
are unfeasible.

Theorem 1.7. K5 and K3,3 are not planar.

PROOF. We give two proofs. The first one is based on Euler’s formula.

1. Suppose by way of contradiction that K3,3 has a plane embedding. Euler’s formula
directly implies that the embedding has n = 2−6+9= 5 faces. Since K3,3 is 2-
connected, it follows from Proposition 1.4 that every edge is incident to two
distinct faces. By the same proposition, each face is bounded by a cycle, hence
by at least 4 edges (cycles in a bipartite graph have even lengths). It follows from
the handshaking lemma that twice the number of edges is larger than four times
the number of faces, i.e. 18≥ 20. A contradiction.

An analogous argument for K5 implies that an embedding must have 7 faces.
Since every face is incident to at least 3 edges, we infer that 2×10≥ 3×7. Another
contradiction.

2. Let {1,3,5} and {2,4,6} be the two vertex parts of K3,3. The cycle (1,2,3,4,5,6)
separates the plane into two components in any plane embedding of K3,3. By θ ’s
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lemma the edges (1, 4) and (2, 5)must lie in the face that does not contain (3, 6).
Then (1,4) and (2,5) intersect, a contradiction. A similar argument applies for
the non-planarity of K5.

Exercise 1.8. Every simple planar graph G with n ≥ 3 vertices has at most 3n −6 edges
and at most 2n −4 faces.

Exercise 1.9. Every simple planar graph with at least six vertices has a vertex with
degree less than 6.

To conclude, we prove a very strong generalization of Exercise 1.8, which allows
to quantify how non-planar dense graphs are. Here, a drawing of a graph is just
a continuous map f : G → R2, that is, a drawing of the graph on the plane where
crossings are allowed. The crossing number c r (G ) of a graph is the minimal number
of crossings over all possible drawings of G . For instance, c r (G ) = 0 if and only if G
is planar. The crossing number inequality [ACNS82, Lei84] provides the following
lower bound on the crossing number.

Theorem 1.10. c r (G )≥ |E |3
64|V |2 if |E | ≥ 4|V |.

The proof is a surprising application of (basic) probabilistic tools.

PROOF. Starting with a drawing of G with the minimal number of crossings, define
a new graph G ′ obtained by removing one edge for each crossing. This graph is planar
since we removed all the crossings, and it has at least |E |− c r (G ) edges (removing one
edge may remove more than one crossing), so we obtain that |E |− c r (G )≤ 3|V |. (Note
that we removed the -6 to obtain an inequality valid for any number of vertices.) This
gives in turn

c r (G )≥ |E | −3|V |.

This can be amplified in the following way. Starting from G , define another graph
by removing vertices (and the edges adjacent to them) at random with some probability
1−p < 1, and denote by G ′′ the obtained graph. Taking the previous inequality with
expectations, we obtain E(c r (G ′′)) ≥ E(|E ′′|)− 3E(|V ′′|). Since vertices are removed
with probability 1−p , we have E(|V ′′|) = p |V |. An edge survives if and only if both
its endpoints survive, and a crossing survives if and only if the four adjacent vertices
survive (there may be less than four adjacent vertices in general, but not in the drawing
minimizing the crossing number, we leave this as an exercise to check), so we get
E(|E ′′|) = p 2|E | and E(c r (G ′′)) = p 4c r (G ). So we obtain

c r (G )≥ p−2|E | −3p−3|V |,

and taking p = 4|V |/|E | – which is less than 1 if |E | ≥ 4|V | – gives the result.
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2 Kuratowski’s Theorem

2.1 The Subdivision Version

We say that H is subdivision of G if H is obtained by replacing the edges of G by
independent simple paths of one or more edges. Obviously, a subdivision of a non-
planar graph is also non-planar. It follows from Theorem 1.7 that a planar graph cannot
have a subdivision of K5 or K3,3 as a subgraph. In 1929, Kazimierz Kuratowski (1896
– 1980) succeeded to prove that this condition is actually sufficient for a graph to be
planar. For this reason K5 and K3,3 are called the Kuratowski graphs, or the forbidden
graphs.

Theorem 2.1 (Kuratowski, 1929). A graph is planar if and only if it does not contain a
subdivision of K5 or K3,3 as a subgraph.

As just noted, we only need to show that a graph without any subdivision of a
forbidden graph is planar. We follow the proof of Thomassen [MT01]. Recall that
a graph is 3-connected if it contains at least four vertices and if removing any two
of its vertices leaves a connected graph. By Menger’s theorem [Wil96, cor. 28.4], a
graph is 3-connected if and only if any two distinct vertices can be connected by at
least three independent paths. If e is an edge of a graph G we denote by G //e the
graph obtained by the contraction of e , i.e. by deleting e , identifying its endpoints,
and merging each resulting multiple edge, if any, into a single edge. The proof of
Kuratowski’s theorem first restricts to 3-connected graphs. By Lemma 2.2 below we
can repeatedly contract edges while maintaining the 3-connectivity until the graph is
small enough so that it can be trivially embedded into the plane. We then undo the
edge contractions one by one and construct corresponding embeddings. In the end,
the existence of an embedding attests the planarity of the graph. In a second phase we
extend the theorem to any graph, not necessarily 3-connected, that does not contain
any subdivision of K5 or K3,3. This is done by adding as many edges as possible to
the graph without introducing a (subdivision of a) forbidden graph. By Lemma 2.5
below the resulting graph is 3-connected and we may conclude with the first part of
the proof.

Lemma 2.2. Any 3-connected graph G with at least five vertices contains an edge e
such that G //e is 3-connected.

PROOF. Suppose for the sake of contradiction that for any edge e = x y , the graph
G //e is not 3-connected. Denote by ve the vertex of G //e resulting from the identifica-
tion of x and y . Then we can find a vertex z ∈V (G //e ) such that {z , ve } disconnects
G //e . In other words, for any edge e = x y of G we can find a vertex z ∈V (G ) such that
G −{x , y , z } is not connected. We choose e and z such that the number of vertices of
the largest component, say H , of G −{x , y , z } is maximal. Let u be adjacent to z in a
component of G −{x , y , z } other than H . See figure 2. By the above reformulation,
we can find a vertex v ∈V (G ) such that G −{z , u , v } is not connected. We claim that
the subgraph H ′ induced by (V (H )∪{x , y }) \ {v } is connected. Since H ′ is contained
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Figure 2: H ′ has more vertices than H even when v ∈ {x , y }.

in G −{z , u , v } and since H ′ has more vertices than H , this contradicts the choice of
H , hence concludes the proof. To see that H ′ is connected we just need to check that
every t ∈V (H ) can be connected to x or y (themselves connected by e ) by a path in
H ′. Since G is 3-connected, there is a path p : t   x in G avoiding z and v . Replacing
x by y if necessary, we can assume that p − x does not contain y . It follows that p − x
is contained in G −{x , y , z , v }, hence in H − v . So p is in H ′.

Exercise 2.3. Let e be an edge of G such that G //e contains a subdivision of a forbidden
graph. Show that G already contains such a subdivision. (Hint: G //e and G need not
contain subdivisions of the same forbidden graph.)

A straight line embedding is said convex if all its faces are bounded by convex poly-
gons.

Proposition 2.4 (Kuratowski’s theorem for 3-connected graphs). A 3-connected graph
G without any subgraph isomorphic to a subdivision of a forbidden graph admits a
convex embedding.

PROOF. We use induction on the number of vertices of G . The proposition is easily
checked by hand if G has four vertices. Otherwise, G has at least five vertices, and
by Lemma 2.2 we may choose an edge e = x y such that G ′ :=G //e is 3-connected.
Moreover, G ′ contains no subdivision of a forbidden graph. See Exercise 2.3. By
induction, G ′ has a convex embedding. Let z be the vertex of G ′ resulting from the
identification of x and y . Since G ′ − z is 2-connected, we know by Proposition 1.4
that the face of G ′ − z that contains z is bounded by a cycle C of G . Let X = {u ∈
V (G ) | u x ∈ E (G )} and let Y = {u ∈ V (G ) | u y ∈ E (G )}. We claim that X and Y are
not interleaved in C , i.e. |X ∩ Y | ≤ 2 and we cannot find two vertices in X and two
vertices in Y that alternate along C . Otherwise, G would contain a subdivision of a
forbidden graph as illustrated in Figure 3. We can obtain a convex embedding of G
from the convex embedding of G ′ as follows: place x at the position of z and insert y
close to x in the face of G ′−Ey incident to z and Y , where Ey := {z v | v ∈ Y }. We next
connect x and y with line segments to their respective neighbors in X and Y , and
finally x to y . The previous claim implies that the resulting straight line drawing of G
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Figure 3: Left, two vertices x1, x2 ∈ X and two vertices y1, y2 ∈ Y appear in an alternate
way along C . We infer the existence of a subdivision of K3,3 in G . Right, X and Y share
three vertices. We infer the existence of a subdivision of K5 in G .

is an embedding. It can easily be made convex using the fact that small perturbations
of the vertices of a convex polygon leave the polygon convex.

The next lemma allows to extend the proposition to graphs that are not necessarily
3-connected and thus concludes the proof of Kuratowski’s theorem.

Lemma 2.5. Let G be a graph with at least four vertices, containing no subdivision of
K5 or K3,3 and such that the addition of any edge between non-adjacent vertices creates
such a subdivision. Then G is 3-connected.

PROOF. We argue by induction on the number n of vertices of G . Note that for n = 4
the lemma just says that K4 is 3-connected. Since removing an edge in K5 leaves a
3-connected planar graph, the lemma is also true for n = 5. We now assume n ≥ 6. We
claim that G is 2-connected. Otherwise, we could write G =G1 ∪G2 where G1 and G2

have a single common vertex x . Let yi ∈Gi , i = 1, 2, be adjacent to x . Adding the edge
y1 y2 creates a subdivision K of a forbidden graph. Since K5 and K3,3 are 3-connected
and since x and y1 y2 are the only connections between G1 and G2, the vertices of K of
degree≥ 3 must lie all in G1 or all in G2. Moreover, K must contain a path using both x
and the edge y1 y2. The subpath between x and the edge y1 y2 can be replaced by one
of the two edges x y1 or x y2 to produce another subdivision of the same forbidden
graph that does not use y1 y2, hence contained in G . This last contradiction proves the
claim.

Suppose that G has two vertices x , y such that G − {x , y } is not connected. We
claim that x y is an edge of G . Otherwise, we could write G =G1 ∪G2 where G1 and
G2 are connected and only have the vertices x , y in common. G ∪ x y must contain a
subdivision K of a forbidden graph. As above, the vertices of K of degree at least three
must all lie in the same subgraph, say G1. We could then replace the edge x y in K
with a path connecting x and y in G2 to produce a subdivision of a forbidden graph
contained in G . We again reach a contradiction.

We now assume for a contradiction that G is not 3-connected and we let x , y be
two vertices disconnecting G . By the previous claim, we may write G =G1 ∪G2 where
G1 ∩G2 reduces to the edge x y . By the same type of arguments used in the above
claims we see that adding an edge to Gi (i = 1, 2) creates a subdivision of a forbidden
graph in the same Gi . We can thus apply the induction hypothesis and assume that
each Gi is 3-connected, or has at most three vertices. By Proposition 2.4, both graphs
are planar and we can choose a convex embedding for each of them. Let zi 6= x , y be



2. Kuratowski’s Theorem 11

a vertex of a face Fi of Gi bounded by x y . Note that Fi must be equal to the triangle
zi x y . (Otherwise, we could add an edge to Gi inside Fi to obtain a larger planar graph.)
Adding the edge z1z2 to G creates a subdivision K of a forbidden graph. We shall show
that some planar modification of G1 or G2 contains a subdivision of a forbidden graph,
leading to a contradiction.

If all the vertices of K of degree ≥ 3 were in G1, we could replace the path of K in
G2 + z1z2 that uses z1z2 by one of the two edges z1 x or z1 y . We would get another
subdivision of the same forbidden graph in G1. Likewise, G2 cannot contain all the
vertices of K of degree ≥ 3. Furthermore, V (G1) \ {x , y } and V (G2) \ {x , y } cannot
both contain two vertices of degree ≥ 3 in K since there would be four independent
paths between them, although G1 and G2 are only connected through x , y and z1z2

in G + z1z2. For the same reason, K cannot be a subdivision of K5. Hence, K is a
subdivision of K3,3 and five of its degree three vertices are in the same Gi . Adding a
point p inside Fi and drawing the three line segments p x , p y , p zi we would obtain a
planar embedding of Gi + {p x , p y , p zi } that contains a subdivision of K3,3. This last
contradiction concludes the proof.

Corollary 2.6. Every triangulation of the sphere with at least four vertices is 3-connected.

PROOF. By Euler’s formula it is seen that such a triangulation has a maximal number
of edges. By Lemma 2.5, it must be 3-connected.

We end this section with a simple characterization of the faces of a 3-connected
planar graph. A cycle of a graph G is induced if it is induced by its vertices, or equiva-
lently if it has no chord in G . It is separating if the removal of its vertices disconnects
G . The set of boundary edges of a face of a plane embedding is called a facial cycle.

Proposition 2.7. The face boundaries of a 3-connected plane graph are its non-separating
induced cycles.

PROOF. Suppose that C is a non-separating induced cycle of a 3-connected plane
graph G . By the Jordan curve theorem R2 \C has two components. Since C is non-
separating one of the two components contains no vertices of G . This component is
not cut by an edge since C has no chord. It is thus a face of G .

Conversely, consider a face f of G . By Proposition 1.4 this face is bounded by a
cycle C . If C had a chord e = x y then by the 3-connectivity of G there would be a
path p connecting the two components of C −{x , y }. However, p and e being in the
same component ofR2 \C (other than f ), they would cross by an application of θ ’s
lemma 1.3. Finally, consider two vertices x , y of G −C . They are connected by three
independent paths. By θ ’s lemma f is included in one of the three components cut
by these paths and the boundary of this component is included in the corresponding
two paths. Hence, C avoids the third path. It follows that G −C is connected.

This proposition says that a planar 3-connected graph has essentially a unique plane
embedding: if we realize the graph as a net of strings there are only two ways of dressing
the sphere with this net; they correspond to the two orientations of the sphere.
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2.2 The Minor Version

A minor of a graph G is any graph obtained from a subgraph of G by contracting a
subset of its edges. In other words, a minor results from any sequence of contraction
of edges, deletion of edges or deletion of vertices (in any order). Equivalently, H is a
minor of G if the vertices of H can be put into correspondence with the trees of a forest
in G and if every edge of H corresponds to a pair of trees connected by a (non-tree)
edge (but all such pairs do not necessarily give rise to edges). Being a minor of another
graph defines a partial order on the set of graphs. This partial order is the object of the
famous graph minor theory developed by Robertson and Seymour and culminating in
the proof of Wagner’s conjecture that the minor relation is a well-quasi-order, i.e. that
every infinite sequence of graphs contains two graphs such that the first appearing
in the sequence is a minor of the other. As an easy consequence, every minor closed
family of graphs is characterized by a finite set of excluded minors. In other words, if
a family of graphs contains all the minors of its graphs, then a graph is in the family if
and only if none of its minors belongs to a certain finite set of graphs. The set of all
planar graphs is the archetypal instance of a minor closed family. Its set of excluded
minors happens to be precisely the two Kuratowski graphs.

Theorem 2.8 (Wagner, 1937). A graph G is planar if and only if none of K5 or K3,3 is a
minor of G .

Remark that if G contains a subdivision of H , then H is a minor of G , but the
converse is not true in general (think of a counter-example). We can nonetheless
deduce Wagner’s version from Kuratowski’s theorem: the condition in Wagner’s theo-
rem is obviously necessary by noting that a minor of a planar graph is planar and by
Theorem 1.7. The condition is also sufficient by the above remark and by Kuratowski’s
theorem. In fact, the equivalence between Wagner and Kuratowski’s theorems can be
shown by proving that a graph contains a subdivision of K5 or K3,3 if and only if K5 or
K3,3 is a minor of this graph [Die05, Sec. 4.4].

3 Other Planarity Characterizations

We give some other planarity criteria demonstrating the fascinating interplay between
Topology, Combinatorics and Algebra.

An algebraic cycle of a graph G is any subset of its edges that induces an Eulerian
subgraph, i.e. a subgraph of G with vertices of even degrees2. It is a simple exercise to
prove that any algebraic cycle can be decomposed into a set of (simple) cycles in the
usual acception. The set of (algebraic) cycles is given a group structure by defining the
sum of two cycles as the symmetric difference of their edge sets. It can be considered
as a vector space over the field Z/2Z and is called the cycle space, denoted by Z (G )
(the letter Z is short for the German word for cycle, Zyklus). The cycle space of a tree
is trivial. Also, the cycle space is the direct sum of the cycle spaces of the connected
components of G . Given a spanning tree of G , each non-tree edge gives rise to a cycle

2An Eulerian subgraph in this sense is not necessarily connected.
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by joining its endpoints by a path in the tree. It is not hard to prove that these cycles
form a basis of the cycle space. Hence, when G = (V , E ) is connected,

dim Z (G ) = 1− |V |+ |E | (1)

This number is sometimes called the cyclomatic number of G . A basis of the cycle
space is a 2-basis if every edge belongs to at most two cycles of the basis.

Theorem 3.1 (MacLane, 1936). A graph G is planar if and only if Z (G ) admits a 2-basis.

PROOF. It is not hard to prove that a graph that admits a 2-basis has a 2-basis
composed of simple cycles only. See Exercise 3.2. Such a 2-basis must be the union of
the 2-bases of the blocks in the block decomposition3 of G . Moreover, G is planar if
and only if its blocks are. We may thus assume that G has a single block, or equivalently
that G is 2-connected.

Suppose that G is planar and consider the set B of boundaries of its bounded
faces in a plane embedding. Every edge belongs to at most two such boundaries by
Proposition 1.4. Furthermore, by the same proposition and the Jordan curve theorem,
a simple cycle C of G is the sum of the boundaries of the faces included in the bounded
region of C . Thus B generates Z (G ). Using Euler’s formula, the number of bounded
faces of G appears to be precisely dim Z (G ). Hence, B is 2-basis.

For the reverse implication, suppose that G has a 2-basis. Note that it is equivalent
that any subdivision of G admits a 2-basis. Moreover, G − e has a 2-basis for any edge
e : if e appears in two elements of the 2-basis replace these two elements by their
sum, otherwise simply remove the basis element that contains e , if any. It follows
that any subdivision of a subgraph of G has a 2-basis. We claim that none of the
forbidden graphs can have a 2-basis, so that G is planar by Kuratowski’s theorem.
Indeed, assume the converse and let C1, . . . , Cd be a 2-basis of a forbidden graph. The
Ci ’s being linearly independent,

∑

i Ci is non-trivial hence contains at least 3 edges.
It follows that

∑

i |Ci | ≤ 2|E | −3. From formula (1) we compute dim Z (K3,3) = 4. Since
every cycle in a bipartite graph has length at least four, we have

∑

1≤i≤4 |Ci | ≥ 4 ·4= 16,
in contradiction with

∑

i |Ci | ≤ 2 · 9− 3 = 15. Similarly, we compute dim Z (K5) = 6,
whence

∑

1≤i≤6 |Ci | ≥ 6 ·3= 18, in contradiction with
∑

i |Ci | ≤ 2 ·10−3= 17.

Exercise 3.2. Show that a graph with a 2-basis admits a 2-basis whose elements are
simple cycles. (Hint: Any algebraic cycle is a sum of edge-disjoint simple cycles. Try to
minimize the total number of such simple cycles in the 2-basis.)

A cut in a graph G = (V , E ) is a partition of its vertices. A cut can be associated with
the subset of edges with one endpoint in each part. Just as for the cycle space, the set of
cuts can be given a vector space structure overZ/2Z by defining the sum of two cuts as
the symmetric difference of the associated edge sets. Equivalently, we observe that the
sum of two cuts {V1, V2} and {W1, W2} is the cut {(V1∩W1)∪(V2∩W2), (V1∩W2)∪(V2∩W1)}.
Remark that the cut space is generated by the elementary cuts of the form {v, V − v },
for v ∈V . A cut is minimal if its edge set is not contained in the edge set of another

3The blocks of G are its subgraphs induced by the classes of the following equivalence relation on its
set of edges: e ∼ e ′ if there is a cycle in G that contains both e and e ′.
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cut. In a connected graph minimal cuts correspond to partitions both parts of which
induce a connected subgraph. Such minimal cuts generate the cut space.

Given a plane graph G , we define its geometric dual G ∗ as the graph obtained
by placing a vertex inside each face of G and connecting two such vertices if their
faces share an edge in G . Note that distinct plane embeddings of a planar graph may
give rise to non-isomorphic duals. When the plane graph G is connected, its vertex,
edge and face sets are in 1-1 correspondence with the face, edge and vertex sets of
G ∗ respectively. Note that the geometric dual of a plane tree has a single vertex, so
that G ∗ may not be simple even if G is. It is not hard to prove that the set of edges of
a (simple) cycle of G corresponds to a minimal cut in G ∗. The converse is also true
since the dual of the dual is the original graph.

For non-planar graphs the above construction is meaningless and we define an
abstract notion of duality that applies in all cases. A graph G ∗ is an abstract dual of
a graph G if the respective edge sets can be put in 1-1 correspondence so that every
(simple) cycle in G corresponds to a minimal cut in G ∗.

Theorem 3.3 (Whitney, 1933). A graph is planar if and only if is has an abstract dual.

The theorem can be proved by mimicking the proof of MacLane’s theorem 3.1, first
showing that if a graph has an abstract dual so does its subgraphs and subdivisions.
We provide a shorter proof based on MacLane’s theorem.

PROOF. The theorem can be easily reduced to the case of connected graphs. By
the above discussion a geometric dual is an abstract dual, so that the condition is
necessary. For the reverse implication, suppose that a graph G has an abstract dual G ∗.
The cycle space of G is generated by its simple cycles, hence by the dual edge sets of
the minimal cuts of G ∗. Those cuts are themselves generated by the elementary cuts.
Clearly an edge appears in at most two elementary cuts (loop-edges do not appear in
any cuts). It follows that the cycle space of G has a 2-basis, and we may conclude with
MacLane’s theorem.

We list below some other well-known characterizations of planarity without proof.
A strict partial order on a set S is a transitive, antisymmetric and irreflexive binary

relation, usually denoted by <. Two distinct elements x , y ∈ S such that either x < y
or y < x are said comparable. A partial order is a linear, or total, order when all the
elements are pairwise comparable. The dimension of a partial order is the minimum
number of linear orders whose intersection (as binary relations) is the partial order.
The order complex of a graph G = (V , E ) is the partial order on the set S =V ∪E where
the only relations are v < e for v an endpoint of e .

Theorem 3.4 (Schnyder, 1989). A graph is planar if and only if its order complex has
dimension at most 3.

See Mohar and Thomassen [MT01, p. 36] for more details. The contact graph of a
family of interior disjoint disks in the plane is the graph whose vertices are the disks in
the family and whose edges are the pairs of tangent disks.
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Theorem 3.5 (Koebe-Andreev-Thurston). A graph is planar if and only if it is the
contact graph of a family of disks.

Section 2.8 in [MT01] is devoted to this theorem and its extensions. A 3-polytope
is an intersection of half-spaces in R3 which is bounded and has non-empty interior.
Its graph, or 1-skeleton, is the graph defined by its vertices and edges.

Theorem 3.6 (Steinitz, 1922). A 3-connected graph is planar if and only if it is the graph
of a 3-polytope.

A proof can be found in the monograph by Ziegler [Zie95, Chap. 4]. We end this
section with a nice and simple planarity criterion relying on a result by Hanani (1934)
stating that any drawing of K5 and of K3,3 has a pair of independent edges with an
odd number of crossings. (Recall that two edges are independent if they do not share
any endpoint.) In fact, we have the stronger property that the number of pairs of
independent edges crossing oddly is odd. This can be proved by first observing the
property on a straight line drawing of K5 (resp. K3,3) and then deforming any other
drawing to the given one using a sequence of elementary moves that preserve4 the
parity of the number of oddly crossing pairs of independent edges. Together with
Kuratowski’s theorem, this proves the following

Theorem 3.7 (Hanani-Tutte). A graph is planar if and only if it has a drawing in which
every pair of independent edges crosses evenly.

A weaker version of the theorem asks that every pair of edges, not necessarily
independent, should cross evenly. See Mustafa’s course notes for a geometric proof,
not relying on Kuratowski’s theorem.

4 Planarity Test

There is a long and fascinating story for the design of planarity tests, culminating with
the first optimal linear time algorithm by Hopcroft and Tarjan [HT74] in 1974. Patrig-
nani [Pat13] offers a nice and comprehensive survey on planarity testing. Although
most of the linear time algorithms have actual implementations, they are rather com-
plex and we only describe a simpler non optimal algorithm based on works of de
Fraissex and Rosensthiel [dFR85, Bra09]. We first recall that the block decomposition
decomposes a connected graph into 2-connected subgraphs connected by trees in a
tree structure. Hence, a graph is planar if and only if its blocks are planar. We can thus

4Those moves are of five types: (i) two edges locally (un)crossing and creating or canceling a bigon,
(ii) an edge locally (un)crossing and creating or canceling a monogon, (iii) an edge passing over a
crossing, (iv) an edge passing over a vertex, and (v) two consecutive edges around a vertex swapping
their circular order. The three first moves are analogous to the Reidemeister moves performed on knot
diagrams. (i),(ii), (iii) and (v) clearly preserve the number of oddly crossing pairs of independent edges.
For (iv) we use the fact that for every vertex and every edge of K5 or K3,3 the edge is independent with
an even number of the edges incident to the vertex.

http://monge.univ-mlv.fr/~goaoc/lec1.pdf


4. Planarity Test 16

restrict the planarity test to 2-connected graphs. Note that the block decomposition
of a graph can be computed in linear time using depth-first search. (See West [Wes01,
p. 157].)

root

e1

e2

b1

b2

a. b.

v

t1

t2

t3

b3

Figure 4: a. A graph (in blue) and a DFS tree in black. b. v is the branching point of a
fork, b1 and b2 are two return edges for e1, b3 is a return edge for e2 and the lowpoint
of e1 is t2. The back edges b1 and b2 are left and the back edge b3 is right.

Also recall that a depth-first search in a graph discovers its vertices from a root
vertex by following edges that form a spanning tree called a depth-first search tree.
We say that a vertex v1 of that tree is higher than another vertex v2 if v1 is a descendent
of v2. The non-tree edges are called back edges. A back edge always connects a vertex
to one that is lower in the depth-first search tree. The depth-first search induces
an orientation of the tree edges directed from the root toward the leaves of the tree.
The back edges are then directed from their highest toward their lowest vertex. Each
back edge b defines an oriented fundamental cycle, C (b ), obtained by connecting its
endpoints with the unique tree path between its target and source points. We write
u v for an edge directed from u to v . Two fundamental cycles may only intersect along
a tree path, in which case the last edge u v along this path together with the outgoing
edges v w1 and v w2 along the two cycles is called a fork with branching point v . A
back edge v w is a return edge for itself and for every tree edge x y such that w is lower
than x , and v is either higher than y or equal to5 y . The return points of an edge are
the targets of its return edges. The lowpoint of the edge is its lowest return point, if
any, or its source if none exists. The lowpoint of a back edge is thus its target point.
We refer to Figure 4 for an illustration of all these concepts.

The idea of the planarity test is as follows. Suppose that a graph G has a plane
embedding and consider a depth-first search tree of G . Without loss of generality,
we may assume that the root is adjacent to the outer face of the plane embedding.
The induced orientation of each fundamental cycle may appear clockwise or counter-
clockwise with respect to the embedding of G . A back edge is said right (with respect
to the embedding) if its fundamental cycle is oriented clockwise, and left otherwise.

5a vertex is neither higher nor lower than itself!
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Consider a fork with outgoing edges e1, e2. They must have return edges since the
graph is 2-connected. Then we have the following necessary conditions:

Fork condition:

1. All return edges of e1 whose lowpoints are higher than the lowpoint of e2 have
fundamental cycles oriented the same way and

2. all return edges of e2 whose lowpoints are higher than the lowpoint of e1 have
fundamental cycles oriented the other way.

e1

e2

b2

root

a.

e2 e1

b1

root

b.

e1

e2

b2

root

d.

e1 e2

b2

root

c.

b

Figure 5: a. and c. The two cases occurring in the fork condition. b. a forbidden case.
d. in this case, one chooses e2 ≺ e1.

Lemma 4.1. In a plane embedding, the orientations of the return edges satisfy the fork
condition.

PROOF. Let us denote by bi the return edge having the same lowpoint as ei . Then
either the disks bounded by C (b1) and C (b2) have disjoint interior, or one is included
in the other:

• In the latter case, swapping the indices 1 and 2 if necessary, we may assume
that e1 is inside C (b2). This is pictured in Figure 5a. Then any return edge of e1

must also be inside the disk bounded by C (b2), and thus be oriented as b2. In
particular, b1 is oriented as b2 and e2 is outside C (b1). It follows that any return
edge of e2 must lie outside C (b1). Furthermore, a return edge b from e2 having
lowpoint higher than the one of b1 must also lie outside C (b2), since otherwise
C (b ) could not join its lowpoint without crossing C (b1). Now, the cycle C (b )
cannot contain the root in its interior as on Figure 5b, since the root is on the
outer face. We infer that b is oriented oppositely to b2. The fork condition is
thus satisfied.

• In the former case, any return edge b of e1 must lie outside C (b2). See Figure 5c.
If the lowpoint of b is higher than that of b2, then b must be oriented oppositely
to b2, since C (b ) cannot contain the root in its interior. The mirror argument
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shows that a return edge from e2 whose lowpoint is higher than the lowpoint of
b1 must be oriented oppositely to b1. We again conclude that the fork condition
is satisfied.

An LR partition is a left-right assignment of the back edges such that the induced
orientations of the fundamental cycles satisfy the fork condition for all the possible
forks. The above lemma shows that a planar graph has an LR partition deduced from
any particular plane embedding. As the following theorem shows, the existence of an
LR partition happens to be sufficient for attesting planarity!

Theorem 4.2 (de Fraysseix and Rosenstiehl, 1985). A connected graph G is planar if
and only if it admits an LR partition with respect to some (and thus any) depth-first
search tree.

PROOF (SKETCH). Essentially, the proof starts by constructing a combinatorial em-
bedding of G from the LR partition, i.e. a circular ordering of the edges around each
vertex, then checking that this combinatorial embedding can indeed be realized in
the plane without introducing crossings. Note that the fork conditions cannot involve
back edges in different blocks in the block decomposition of G , so that we can assume
G to be 2-connected by the above discussion. For each vertex v we define a total
ordering ≺ on its outgoing edges as follows. If v is the root, it can have only a single
outgoing edge by the 2-connectivity of G and there is nothing to do. Otherwise, v has
a unique incoming tree edge e and the total ordering will correspond to the circular
clockwise ordering around v broken at e into a linear ordering. Let e1, e2 be two edges
going out of v , and for i = 1, 2, let bi be equal to ei if ei is a return edge, or a return edge
of ei with the lowest return point (there might be several ones) among its return edges.
We need to decide if e1 ≺ e2 or the opposite. The idea is that in any plane drawing of
the graph, the ordering of e1 and e2 is enforced by the LR-assigment of b1 and b2.

• If b1 is a left back edge while b2 is a right back edge, then we declare e1 ≺ e2 since
it must be the case in any plane drawing of G that respects the LR assignment
(as in Figure 5c).

• If b1 and b2 are both right back edges we let e2 ≺ e1 if either the lowpoint of b2

is lower than the lowpoint b1 (as in Figure 5a), or if e1 has another right return
edge towards another return point (as in Figure 5d). By the fork condition, it is
impossible for both e1 and e2 to have another right return edge towards another
return point, so this is well-defined.

• If b1 and b2 are both left back edges, the previous situation leads to the opposite
decision.

• If none of this applies, we order them arbitrarily.

There remains to include the incoming return edges in this ordering. Let e1 ≺ e2 ≺
· · · ≺ e` be the resulting ordering of the edges going out of v . We denote by L (ei ) and
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R (ei ) the left and right incoming back edges whose source points are in the subtree
rooted at the target of ei , or equivalently whose fundamental cycles contain ei . We
order the elements of L (ei ) as follows: we let b1 ≺ b2 if and only if the fork of their
cycles C (b1) and C (b2) has outgoing edges a2 ≺ a1. An analogous ordering is defined
for R (ei ). We finally concatenate all those orderings as follows, the rationale is pictured
in Figure 6:

L (e1)≺ e1 ≺R (e1)≺ L (e2)≺ e2 ≺ · · · ≺ L (e`)≺ e` ≺R (e`)

e1

e2L (e1)

R (e1)

L (e2)

R (e2)

Figure 6: Ordering the incoming return edges.

For the root vertex we define the ordering L (e )≺ e ≺ R (e )where e is the unique
outgoing edge of the root and L (e ), R (e ) and their ordering are defined similarly as
above. It remains to prove that the computed orderings define a planar combinatorial
embedding. To this end, we first embed the depth-first search tree into the plane
by respecting the computed orderings. This is obviously always possible. We then
insert a small initial and final piece for each back edge in its place while respecting
the circular orderings and without introducing crossings. Consider a simple closed
curve C that goes along the embedding of the depth-first search tree, staying close to it.
Each inserted back edge piece intersects C in a single point. Those points are paired
according to the back edge to which they belong. We claim that the constructed order-
ings are such that the list of intersections along C is a well parenthesized expression.
To see this we just need to prove that any two pairs of points appear in the good order
(not interlaced) along C . There are two cases to consider: the pair corresponds to back
edges, say b1, b2, that are either on the same side, or on opposite sides. Suppose for
instance that b1 and b2 are both right edges. If they have the same lowpoint then the
constructed orderings implies that their initial and final pieces indeed appear in the
good order along C . Similar arguments hold for the other cases. It follows from the
claim that we can connect all the paired pieces without introducing crossings, thus
proving that G has a plane embedding.

In order to test if G has an LR partition we can first compute a constraint graph
whose nodes are the back edges and whose links are 2-colored constraints: the blue
links connect nodes that must be on the same side and the red links connect nodes
that must lie on opposite sides. All the links are obtained from the fork conditions.
This graph can easily be constructed in quadratic time with respect to the number of
edges of G . It remains to contract the blue links and check if the resulting constraint
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graph is bipartite to decide if G has an LR partition or not. This can clearly be done in
quadratic time.

5 Drawing with Straight Lines

Proposition 2.4 together with Lemma 2.5 show that every planar graph has a straight
line embedding. One of the oldest proof of existence of straight line embeddings is
credited to Fáry [Fár48] (or Wagner, 1936) and does not rely on Kuratowski’s theorem.
By adding edges if necessary we can assume given a maximally planar graph G , so
that adding any other edge yields a non-planar graph. Every embedding of G is thus a
triangulation, since otherwise we could add more edges without breaking the planarity.
We show by induction on the number of vertices that any (topological) embedding of
G can be realized with straight lines. Choose one embedding. By Euler’s formula, G
has a vertex v of degree at most 5 that is not a vertex of the unbounded face (triangle)
of the embedding. Consider the plane triangulation H obtained from that of G by first
deleting v and then adding edges (at most two) to triangulate the face of G − v that
contains v in its interior. By the induction hypothesis, H can be realized with straight
lines. We now remove the at most two edges that were added and embed v in the
resulting face. Since the face is composed of at most 5 edges, it must be star-shaped
and we can put v in its center to join it with line segments to the vertices of the face.
We obtain this way a straight line embedding of G .

There is another proof of Proposition 2.4 due to Tutte [Tut63] that actually provides
an algorithm to explicitly compute a convex embedding of any 3-connected planar
graph G = (V , E ). The algorithm can be interpreted by a physical spring-mass system.
Consider a facial cycle C of G (recall that those are determined by Proposition 2.7) and
nail its vertices in some strictly convex positions onto a plane. Connect every other
vertex of G , considered as a punctual mass, to its neighbors by means of springs. Now,
relax the system until it reaches the equilibrium. The final position provides a convex
embedding! The system equilibrium corresponds to a state with minimal kinetic
energy. By differentiating this energy one easily gets a linear system of equations
where each internal vertex in VI := V \ V (C ) is expressed as the barycenter of its
neighbors. The barycentric coefficients are the stiffnesses of the springs. In practice,
we associate with every edge e in E \E (C ) a positive weight (stiffness) λe . In fact, if u
and v are neighbor vertices it is not necessary that λu v =λv u . One may use “oriented”
stiffness. Formally, we have

Theorem 5.1 (Tutte, 1963). Every strictly convex embedding of the vertices of C extends
to a unique map τ : V →R2 such that for every internal vertex v , its image τ(v ) is the
convex combination of the image of its neighbors N (v )with weights λv w , for w ∈N (v ):

∀v ∈VI ,
∑

w∈N (v )

λv w (τ(v )−τ(w )) = 0. (2)

Moreover, τ induces a convex embedding of G by connecting the images of every pair of
neighbor vertices with line segments.
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For conciseness, we number the vertices in VI from 1 to k and the vertices of C
from k +1 to n (hence, k = |VI | and n = |V |). We also write λi j for the weight of edge i j
and denote by N (i ) the set of neighbors of vertex i . We finally put λi j = 0 for j 6∈N (i ).
We follow the proof from [RG96] and from the course notes of Éric Colin de Verdière
http://www.di.ens.fr/~colin/cours/all-algo-embedded-graphs.pdf.

Lemma 5.2. If G is connected, the system (2) has a unique solution.

PROOF. (2) can be written

Λ





τ1
...
τk
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∑

j>k λ1 jτ j
...

∑

j>k λk jτ j





where τi stands for τ(i ) and
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We need to prove that Λ is invertible. Let x ∈Rk such that Λx = 0 and let xi be one
of its components with maximal absolute value. We set xk+1 = xk+2 = . . . = xn = 0.
Since (Λx )i =

∑

j∈N (i )λi j (xi − x j ) = 0 and λi j > 0 for j ∈N (i ) we infer that x j = xi for
j ∈N (i ). By the connectivity of G , all the x j , j = 1, . . . , n , are null. We conclude that Λ
is non-singular.

In the sequel, we refer to τ as Tutte’s embedding. We also assume once and for all
that G is 3-connected.

Remark 5.3. Since the weights are positive the Tutte embedding of every internal
vertex is in the relative interior of the convex hull of its neighbors. In particular, this
remains true for the projection of the vertex and its neighbors on any affine line.

We shall derive a maximal principal from this simple remark. Let K be a cycle of
G . By Proposition 2.7, G has a unique embedding on the sphere (up to change of
orientation) and its faces can be partitioned into two families corresponding to the
two connected components of the complement of K . The vertices of G −K incident
to a face in the part that does not contain C are said interior to K .

Lemma 5.4 (Maximum principle). Let h be a non-constant affine form over R2 such
that the Tutte embedding of K is included in the half-plane {h ≤ 0} and such that at
most two vertices of K are on the line {h = 0}. Then each vertex v interior to K satisfies
h (τ(v ))< 0.

PROOF. Consider a vertex v interior to K that maximizes h and suppose for a
contradiction that h (τ(v )) ≥ 0. Let H be the subgraph of G induced by the vertices

http://www.di.ens.fr/~colin/cours/all-algo-embedded-graphs.pdf
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interior to K and let Hv be the component of v in H . By the above Remark 5.3, all the
neighbors w ∈N (v ), which are either interior to K or on K , must satisfy h (τ(w )) =
h (τ(v )). Hence, the Tutte embedding of Hv is included in {h ≥ 0}. Since G is 3-
connected, Hv must be attached to K by at least three vertices. These attachment
vertices are embedded in {h ≤ 0} and at least one of them, call it u , is embedded
in {h < 0} since at most two are on {h = 0}. Remark 5.3 applied to any vertex of Hv

adjacent to u then leads to a contradiction.

Corollary 5.5. The Tutte embedding of every internal vertex lies in the interior of the
convex hull of the given strictly convex embedding of C .

PROOF. By the maximum principle, every half-plane that contains C contains the
interior vertices in its interior.

Let h be a nonzero linear form over R2. A vertex of G whose Tutte’s embedding is
aligned with the Tutte embedding of its neighbors in the direction of the kernel of h is
said h-passive, and h-active otherwise.

Lemma 5.6. Let h be a non-trivial linear form and let v be an h-active interior vertex.
G contains two paths U (v, h ) and D (v, h ) such that

1. U (v, h ) := v0, v1, . . . vb joins v = v0 to a vertex vb of C and h is strictly increasing
along U (v, h ), i.e. h (τ(v j+1))> h (τ(v j )) for 1≤ j < b .

2. D (s , h ) joins v to a vertex of C and h is strictly decreasing along D (s , h ).

PROOF. Since v is h-active, Remark 5.3 implies the existence of some neighbor
w with h (τ(w )) > h (τ(v )). If this neighbor is on C then we may set U (v, h ) = v w .
Otherwise, w is itself h-active and we can repeat the process until we reach a vertex of
C , thus defining the path U (v, h ). An analogous construction holds for the downward
path D (s , h ).

Lemma 5.7. For every non-trivial linear form h, all the interior vertices are h-active.

PROOF. By way of contradiction, suppose that some interior vertex v is h-passive.
By Lemma 5.5, some vertex w of C satisfies h (τ(w ))> h (τ(v )). Since G is 3-connected,
we can choose three independent paths P1, P2, P3 from v to w . For i = 1,2,3, let Qi

be the initial segment of Pi from v to the first h-active vertex wi along Pi . Remark
that Qi has at least one edge and that it is contained in the line {h = h (τ(v ))}. By
Lemma 5.6, we can choose two paths U (wi , h ) and D (wi , h ) from wi to vertices on C .
By the preceding remark, the three pathsQi , U (wi , h ) and D (wi , h ) are pairwise disjoint
except at wi . Using that Q1,Q2,Q3 only share their initial vertex v , it is easily seen that
C ∪i=1,2,3 (Qi ∪P (wi , h )∪D (wi , h )) contains a subdivision of K3,3, in contradiction with
Kuratowski’s theorem.
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Recall that G is supposed to have a plane embedding with facial cycle C . Using the
stereographic projection if necessary, we may assume that C is the facial cycle of the
unbounded face. We temporarily assume that all facial cycles of G , except possibly C ,
are triangles.

Lemma 5.8. Let u v x and u v y be the two facial triangles incident to an edge u v of G
not in C , then τ(x ) and τ(y ) are on either sides of any line through τ(u ) and τ(v ).

PROOF. Note that we do not assumeτ(v ) 6=τ(u ) in the lemma. Let h be a linear form
whose kernel has the direction of a line ` through τ(u ) and τ(v ). By Lemma 5.6, there
are two paths U (u , h ) and U (v, h ) embedded strictly above ` connecting respectively
u and v to C . We can extract from {u v }∪U (u , h )∪U (v, h ) a cycle K above `with only
u and v on `. By the maximum principle, all the vertices interior to K are embedded
strictly above `. One of the faces u v x and u v y must be contained in the interior of
K , so that either τ(x ) or τ(y ) is strictly above `. An analogous argument using D (u , h )
and D (v, h ) shows that one of τ(x ) or τ(y ) is strictly below `.

Corollary 5.9. All facial triangles u v w are non-degenerate, i.e. τ(u ),τ(v ) and τ(w )
are pairwise distinct.

PROOF. By Corollary 5.5 all the triangles with an edge in C are non-degenerate.
By Lemma 5.8 all their adjacent triangles are themselves non-degenerate and by
connectivity of the dual graph, all the triangles are non-degenerate.

Corollary 5.10. If all the facial triangles other than C are triangles the Tutte embedding
indeed induces a straight line embedding of G .

PROOF. Since all the facial triangles are non-degenerate, it is enough to prove that
their embeddings have pairwise disjoint interiors. Let p be a point contained in the
interior of the embedding of some triangle t . Consider a ray r issued from p that
avoids all the embeddings τ(V ) of the vertices of G . This half-line crosses some edge
e0 of t0 := t . By Lemma 5.9 the other triangle t1 incident to e0 crosses r on the other
side of t0, away from p . In turn, r crosses another edge e1 of t1 and we define t2 as the
other incident triangle. This way we define a sequence of interior disjoint triangles
t0, t1, . . . , ti and edges e0, e1, . . . , ei all crossed by r , each time further away from p until
we hit C , i.e. ei belongs to C . Remark that ti only depends on r as it is the unique
triangle incident to the intersection of r and C . Let t ′ be another triangle that contains
p in its interior. It gives rise to another sequence t ′0 = t ′, t ′1, . . . , t ′j of triangles crossed
by r . By the preceding remark, ti = t j . Since the preceding triangles are defined
unambiguously, we conclude that the two sequences are equal. In particular t = t ′.

PROOF OF TUTTE’S THEOREM. This last corollary concludes the proof of Tutte’s the-
orem 5.1 when all facial cycles other than C are triangles. When this is not the case,
we can triangulate the faces other than C , adding m −3 edges in each face of length
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m to obtain a planar graph G ′ with the above property. It is possible to put weights
on the edges of G ′, including those of G , so that the solution for system (2) written
for G ′ is the same as for the initial system for G . This is a consequence of Remark 5.3
and of the next exercise. By Corollary 5.10, Tutte’s embedding provides a straight line
embedding of G ′. Removing the extra edges, we obtain a straight line embedding of G .
It remains to observe that each face of this embedding is convex since by Lemma 5.7
and Remark 5.3, the angle at every vertex of a face is smaller than π.

Exercise 5.11. Let p be a point interior to the convex hull of a finite point set P . Show
that p is a convex combination of the points of P with strictly positive coefficients
only. (Hint: the convex hull of P ∪{p} is star-shaped with respect to p .)

One may wonder whether the barycentric method of Tutte could be extended in three
dimensions in order to embed a triangulated 3-ball given a convex embedding of
its boundary. However, É. Colin de Verdiére et al. gave counterexamples to such
an extension showing that expressing each interior vertex as the barycenter of its
neighbors does not always yield an embedding [CdVPV03].
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