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1 Surfaces

1.1 Surfaces and cellularly embedded graphs

A surface is a Hausdorff and second countable topological space that is locally homeo-
morphic to the plane : that means that every point has a neighborhood homeomorphic
to R2. Recall that a space is Hausdorff if every pair of distinct points have disjoint
neighborhood and is second countable if it admits a countable base of open sets.
In this course, we will only deal with compact surfaces, and will generally consider
surfaces up to homeomorphism, which is why we say “the sphere” instead of “a sphere”.

Figure 1: The sphere, the torus and the Klein bottle.
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Examples of surfaces include the sphere S2, the torus T2, or the Klein BottleK2,
see Figure 1. Note that so far, we have not proved that they are different. We emphasize
that surfaces are defined intrinsically, i.e., they do not have to be embedded inR3. For
example, the Klein bottle cannot be embedded inR3: as in Figure 1, any representation
of it in the usual space induces self-crossings. But this does not prevent it from being
a surface : it is behaved locally like the plane which is all that matters here.

Exercise 1.1. Consider two copies of the sphere and identify all the corresponding
points in the two copies, except for the North pole N . Formally, the resulting space
is S2×{0,1}/∼, where (s ,0)∼ (s ,1) for all s ∈ S2 \ {N }. Show that this space is locally
homeomorphic to the plane but that it is not Hausdorff.

Exercise 1.2. Show that the plane is second countable. Deduce that a compact space
locally homeomorphic to the plane is second countable.

Following our approach outlined in the panorama, we will study surfaces by decom-
posing them into fundamental pieces, which can be seen as the faces of an embedded
graph. Analogously to the planar case, an embedding of a graph G into a topological
surface Σ is an image of G in Σwhere the vertices correspond to distinct points and
the edges correspond to simple arcs connecting the image of their endpoints, such
that the interior of each arc avoids other vertices and arcs. We first remark that G can
always be embedded in some surface. To see this, we can make a drawing of G in the
plane and introduce a small handle at every edge intersection as on Figure 2 to obtain
an embedding.

Figure 2: A plane drawing of K3,3 with a crossing and an embedding in a genus 1
surface.

Figure 3: The complement of the graph in the surface is a disjoint union of open discs.

The faces of an embedding are the connected components of S \G . A graph is
cellularly embedded on S if it is embedded and all its faces are homeomorphic to a
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disk, see Figure 3. Thus, describing a cellularly embedded graph amounts to describing
a combinatorial way to obtain a surface, by gluing disks together, and one can classify
surfaces by studying the various possibilities. The following theorem shows that this
approach loses no generality:

Theorem 1.3 (Kerékjártó-Radó). On any compact surface, there exists a cellularly em-
bedded graph.

Since disks can be triangulated, this is equivalent to saying that any compact
surface can be triangulated, which is the way this theorem is generally stated in the
literature.

PROOF. (Sketch) The result is obvious when the surface, call it S , is a sphere, so we
assume this is not the case. Since S is compact and locally planar, it can be covered by
a finite number of closed disks Di , and up to the removal of the superfluous ones, we
can assume that no disk lies in the union of any others. Then, if these disks intersect
nicely enough (for example if two different boundaries ∂ D and ∂ D ′ intersect in a
finite number of points), one obtains a finite number of components in S \∪∂ Di . One
can easily show that each of these is a disk (because S is not a sphere!), and therefore
one obtains a cellular graph by taking as vertices the intersection points, and as edges
the arcs of circles.

So it suffices to show that one can assume that the disks intersect nicely. This can
be done by repeated applications of the Jordan-Schoenflies Theorem, but it requires
significant work. We refer to Thomassen [Tho92] or Doyle and Moran [DM68] for more
details.

Remark: The issue in this (non-)proof due to a possible infinite number of con-
nected components might look like a mere technicality which one can obviously fix.
However, we argue that there is a real difficulty lurking there, because the higher
dimensional theorem is false: there exists a 4-manifold (A topological space locally
homeomorphic toR4 that can not be triangulated1, see for example Freedman [Fre82].

As in the planar case, a triangulation is a cellular embedding of a graph where all
the faces have degree 3. A subdivision of a (triangular) face F is obtained by adding a
vertex v inside the face, and adding edges between the new vertex v and all the vertices
on F , or by adding a vertex w in the middle of an edge and adding edges between w
and the non-adjacent vertices in the at most two incident faces. A triangulation is a
refinement of another triangulation if it is obtained by repeated subdivisions. The
same techniques can also be used to prove the following theorem:

Theorem 1.4 (Hauptvermutung in 2 dimensions). Any two triangulations on a given
surface have a common refinement.

We refer to Moise [Moi77] for a proof. As the name indicates (“main hypothesis”
in German ), this was widely believed to be true in any dimension, but once again
counterexamples were found in dimensions 4 or higher (see for example [RCS+97]).

1On a first approximation, it means that it can not be built from a finite number of balls. More
formally, it can not be realized as a simplicial complex, which we will introduce later on in the course.
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1.2 Polygonal schemata
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Figure 4: From the polygonal scheme {a b c b̄ , c̄ d ā d̄ } to a cellular embedding.

In order to classify surfaces, we introduce polygonal schemata, which are a way
of encoding the combinatorial data of a cellularly embedded graph : it describes a
finite number of polygons with oriented sides identified in pairs. We will see later on,
in Section 2, other avatars of this combinatorial description of a cellularly embedded
graph.

Formally, let S be a finite set of symbols, and denote by S̄ = {s̄ | s ∈ S}. Then a
polygonal scheme is a finite set R of relations, each relation being a non-empty word
in the alphabet S ∪ S̄ , so that for every s ∈ S , the total number of occurences of s or s̄
in R is exactly two.

Starting from a cellularly embedded graph it induces a polygonal scheme in the
following way: we first name the edges and orient them arbitrarily. Then for every
face, we follow the cyclic list of edges around that face, with a bar if and only if an
edge appears in the wrong direction. Every face gives us a relation of R and since
every edge is adjacent to exactly two faces, possibly the same, we obtain a polygonal
scheme. Conversely, starting from a polygonal scheme, for each relation of size n we
build a polygon with n sides, and label its sides following the relation (with the bar
indicating the orientation). Then, once all the polygons are built, we can identify the
edges labelled with the same label taking the orientations into account. See Figure 4.

Exercise 1.5. The topological space obtained this way is a compact surface.

Thus, polygonal schemes and cellularly embedded graphs are two facets of the
same object. Furthermore, by Theorem 1.3, every surface has a cellularly embedded
graph, and thus can be obtained by some polygonal scheme. We leverage on this to
classify surfaces.

1.3 Classification of surfaces

Theorem 1.6. Every compact connected surface is homeomorphic to a surface given by
one of the following polygonal schemata, each made of a single relation:

1. a ā (the sphere),

2. a1b1ā1b̄1 . . . ag bg āg bg for some g ≥ 1,

3. a1a1 . . . ag ag for some g ≥ 1.
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Figure 5: The orientable surface of genus 3 and the non-orientable surface of genus 3.

In the second case, the surface is said to be orientable, while in the third case it is
non-orientable. The integer g is called the genus of the surface (by convention g = 0
for the sphere). In the orientable case, the genus quantifies the number of holes of a
surface : an orientable surface of genus g can be built by adding g handles to a sphere.
A non-orientable surface of genus g can be built by cutting out g disks of a sphere and
gluing g Möbius bands along their boundaries. See Figure 5.

PROOF. We follow the exposition of Stillwell [Sti93]. Let S be a compact connected
surface, and let G be a graph cellularly embedded on S , which exists by Theorem 1.3.
Whenever an edge of G is adjacent to two different faces, we remove it. Whenever an
edge of G is adjacent to two different vertices, we contract2 it. When this is done, we
obtain a cellularly embedded graph G ′ with a single face and a single vertex. If there
are no more edges, then by uncontracting the single vertex into two vertices linked by
an edge, we are in case 1 of the theorem and the surface is a sphere. Therefore we can
now assume that there is at least one edge.

The graph G ′ induces a polygonal scheme consisting of a single relation. We will
show that this relation can be transformed into either case 2 or case 3 of the theorem
without changing the homeomorphism class of S .

a a

P

Q

a a

P

Q

b
a

P

Qb

b

Figure 6: From a P aQ to b b PQ̄ .

• If the polygonal scheme has the form a P aQ where P and Q are possibly empty
words, then we can transform it into b b PQ̄ by adding a new edge and removing

2The contraction is not meant in the graph-theoretical sense introduced in the earlier chapter : it
might result in loops and multiples edges, which we keep.
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Figure 7: From a P bQ ā R b̄ S to c d c̄ d̄ P SRQ .

a

a

b c

b

c a

a

b c

d b

c d

c b

a

d
b

c

Figure 8: From a a b c b̄ c̄ to d̄ c̄ b̄ d̄ b̄ c̄ .

a , see Figure 6. Inductively, we conclude that each pair of symbols with the same
orientation appears consecutively in the polygonal scheme.

• If the polygonal scheme has the form aU ā V , then U and V must share an
edge b since otherwise G ′ would have more than one vertex. By the preceding
step, b must appear in opposite orientations in U and V , so we have the form
aU ā V = a P bQ ā R b̄ S . This can be transformed into d c d̄ c̄ P SRQ , as pictured
in Figure 7. Inductively, at the end of this step the relation is a concatenation of
blocks of the form a a or a b ā b̄ . If all the blocks are of one of these types, we are
in case 2 or 3 and we are done.

• Otherwise, the relation has a subword of the form a a b c b̄ c̄ . This can be trans-
formed into d̄ c̄ b̄ d̄ b̄ c̄ , and then using the first step again this can be transformed
into e e f f g g . Inductively, we obtain a relation of the form 3.

This concludes the proof.
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Let G be a graph cellularly embedded on a compact surface. The Euler character-
istic of this embedding equals v − e + f , where v is the number of vertices, e is the
number of edges and f is the number of faces of the embedded graph.

Lemma 1.7. The Euler characteristic of a graph G cellularly embedded on a surface S
only depends on the surface S.

PROOF. Let G and G ′ be two cellular embeddings on the same surface S . Since
triangulating faces does not change the Euler characteristic, one can suppose that they
are triangulated. By Theorem 1.4, they have a common refinement. Since subdividing
faces does not change the Euler characteristic, this proves the Lemma.

The Euler characteristic of the surfaces in Theorem 1.6 are readily computed from
their polygonal schemes: for the sphere we obtain two, for the orientable surfaces
2−2g and for the non-orientables ones 2−g . Therefore the orientable surfaces are all
pairwise non-homeomorphic, as are the non-orientable ones. Can orientable surfaces
be homeomorphic to non-orientable ones?

Lemma 1.8. A surface S is orientable if and only if it has a cellularly embedded graph
G such that the boundary of its faces can be oriented so that each edge gets two opposite
orientations by its incident faces.

PROOF. If the surface S is orientable, then it can be obtained by a polygonal scheme
of type 2, for which the boundaries of the faces can be oriented as the lemma requires.
If the surface is non-orientable, then any cellularly embedded graph G has a common
refinement with one having a polygonal scheme of type 3. Observing that such a graph
can not be oriented as the lemma requires, and that this property is maintained when
refining, this proves the lemma.

Corollary 1.9. Orientable surfaces are not homeomorphic to non-orientable ones.

Therefore, we have established that all the surfaces in Theorem 1.6 are pairwise non-
homeomorphic. Conversely, any pair of connected surfaces with the same orientability
(as defined by Lemma 1.8) and Euler characteristic are homeomorphic.

Remark: This classification of surfaces can be extended to the setting of surfaces
with boundary: a surface with boundary is a topological space where every point is
locally homeomorphic to either the plane or the closed half-plane. The boundary of
such a surface is the set of points that have no neighborhood homeomorphic to the
plane. One can show that up to homoemorphism, in line with the above classification,
surfaces with boundaries are classified by their genus, their orientability and the
number of boundaries (i.e., connected components of the boundary). One way to
obtain this is on the one hand to observe that the number of boundaries is a topological
invariant, and on the other hand that by gluing disks on the boundaries of a surface with
boundary, one obtains a surface without boundary, for which the usual classification
applies. The Euler characteristic of the orientable, respectively non-orientable surface
of genus g with b boundaries is 2−2g − b , respectively 2− g − b .
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2 Maps

To make things simpler we shall restrict ourselves from now on to orientable surfaces.
Up to homeomorphism, a cellular embedding of a graph can be described by the graph
itself together with the circular ordering of the edges incident to each vertex. These are
purely combinatorial data referred to as a rotation system, a cellular embedding (of
a graph), a combinatorial surface, a combinatorial map, or just a map. The theory
of combinatorial maps was developed from the early 1970’s, but can be traced back
to works of Heffter [Hef91, Hef98] and Edmonds [Edm60] for the combinatorial de-
scription of a graph embedded on a surface. The notion of combinatorial map relies
on oriented edges rather than just edges. An oriented edge is also called an arc or a
half-edge. Formally, a combinatorial map is a triple (A,ρ, ι)where

• A is a set of arcs,

• ρ : A→ A is a permutation of A,

• ι : A→ A is a fixed point free involution.

This data allows to recover the embedded graph easily: its vertices correspond to the
orbits, or cycles (of the cyclic decomposition), of ρ and its edges correspond to the
orbits of ι (so that a and ι(a ) correspond to the two orientations of a same edge). The
source vertex of an arc is itsρ-orbit. We shall often write ā for ι(a ). There are two basic
ways of visualizing the corresponding cellular embedding. One way consists in placing
disjoint disks in the x y -plane of R3, one for each vertex, then attaching rectangular
strips to the disks, with one strip per edge. The strips should expand in R3 so that
they do not intersect. The counterclockwise ordering of the strips attached to a disc
should coincide with the cycle of ρ defining the corresponding vertex. See Figure 9
for an illustration. The resulting ribbon graph is topologically equivalent to a surface

ρ

ρ
a

b
c

d
e

f
g

h

Figure 9: A cellular embedding associated to the map (A,ρ, ι) with A =
{a , b , c , d , e , f , g , h}, ρ = (a , b , c , e )(g , d , h , f ) and ι = (a , b )(c , d )(e , f )(g , h ). The cor-
responding graph has a loop edge and a multiple edge.

with boundary. Finally glue a disk along each boundary component to a obtain a
closed surface where the graph is cellularly embedded. Note that the boundary of each
face, traversed with the face to the right, visits the arcs according to the permutation
ϕ :=ρ ◦ ι. Theϕ-orbits are called facial walks. A facial walk need not be simple as can
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be seen on Figure 3. Note that this construction is dual to the concept of polygonal
scheme that we saw earlier : another way of visualizing the cellular embedding is to
draw one polygon per facial walk, marking its sides with the arcs of the orbit. Then glue
the sides of the polygons that correspond to oppositely oriented arcs (related by the
involution ι). Figure 10 illustrates this second construction. The numbers |V |, |E |, |F |

ρ

ρ
a

b
c

d
e

f
g

h

a
c

h

d
e

g

f

b

Figure 10: Left, the same map as above. Middle, the facial walks of ϕ =
(a , c , h , d , e , g , f )(b ). Right, the resulting graph embedding.

of vertices, edges and faces of the resulting surface are thus given by the number of
cycles of the permutations ρ, ι and ϕ respectively. Obviously, the number of cycles of
the involution ι is just |E |= |A|/2. The Euler characteristic of this surface can then be
computed by the formula

χ = |V | − |E |+ |F |.

Basic operations on maps. The contraction or deletion of an edge in a graph ex-
tend naturally to embedded graphs. Given a map M = (A,ρ, ι) with graph G , the
contraction of a non-loop edge e = {a , ā } in G leads to a new map M /e obtained by
merging the circular orderings at the two endpoints of e . See Figure 11. Formally,

b
a

ρ

ι
ā

ρ′
bc c

Figure 11: The contraction of a non-loop edge. ρ(b ) = a =⇒ ρ′(b ) =ρ ◦ ι(ρ(b )) = c .

M /e = (A \e ,ρ′, ι′)where ι′ is the restriction of ι to A \e andρ′ is obtained by merging
the cycles of a and ā , i.e.,

∀b ∈ A \ e , ρ′(b ) =







ρ(b ) if ρ(b ) 6∈ e ,
ρ ◦ ι(ρ(b )) if ρ(b ) ∈ e and ρ ◦ ι(ρ(b )) 6∈ e ,
(ρ ◦ ι)2(ρ(b )) otherwise.
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Likewise, if e has no degree one vertex, the deletion of e in G leads to new map
M −e = (A\e ,ρ′, ι′)where ι′ is the restriction of ι to A\e andρ′ is obtained by deleting
a and ā in the cycles of ρ, i.e.,

∀b ∈ A \ e , ρ′(b ) =







ρ(b ) if ρ(b ) 6∈ e ,
ρ2(b ) if ρ(b ) ∈ e and ρ2(b ) 6∈ e ,
ρ3(b ) otherwise.

(1)

Figure 12 illustrates the deletion of a loop edge. Let us look at the effect of an edge

b

ā

ρ
a

c
b ρ′

c

b

ā

ρ
a

c

b
ρ′

c

Figure 12: The deletion of a loop edge. Above, We have ρ2(b ) 6∈ {a , ā } implying ρ′(b ) =
ρ2(b ) = c . Below, ρ2(b ) ∈ {a , ā } so that ρ′(b ) =ρ3(b ) = c .

contraction or deletion on the topology of a cellular embedding.

Lemma 2.1. If M is a connected map with at least two edges and e = {a , ā } is a non-loop
edge of M then M /e is connected and has the same Euler characteristic as M .

PROOF. The lemma is quite clear if one remarks that M /e has the same number of
faces as M but has one edge less and one vertex less than M . Hence,

χ(M \ e ) = (|V (M )| −1)− (|E (M )| −1) + |F (M )|=χ(M )

An edge of an embedded graph is said regular if is it incident to two distinct faces and
singular otherwise.

Lemma 2.2. Let e be an edge of a map M with at least two edges. If e has no vertex of
degree one, then

χ(M − e ) =

�

χ(M ) if e is regular
χ(M ) +2 otherwise.

Note that the deletion of e may disconnect the map.
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PROOF. Clearly, M ′ has the same number of vertices has M and one edge less. Let
ϕ =ρ ◦ ι and ϕ′ =ρ′ ◦ ι′ be the facial permutation of M and M ′ respectively. Writing
e = {a , ā }, we have that e is regular if and only if the ϕ-cycles of a and ā are distinct.
Using formula (1), we see that the cycles of ϕ′ are the same as for ϕ except for those
containing a and ā , which are merged if they are distinct for ϕ and which is split
otherwise. We infer that M ′ has one face less in the former case and one more in the
latter. We conclude that

χ(M − e ) = |V (M )| − (|E (M )| −1) + (|F (M )| −1) =χ(M )

if e is regular and

χ(M − e ) = |V (M )| − (|E (M )| −1) + (|F (M )|+1) =χ(M ) +2

otherwise.

We also define an edge subdivision in a map by introducing a vertex in the middle
of one of its edges. Likewise, a face subdivision consists in the splitting of a face
by the insertion of an edge between two vertices of its facial walk. Remark that by
contracting one of the two new edges in an edge subdivision one recovers the original
map. Similarly, the new edge in a face subdivision is regular and its deletion leads to
the original map. It follows from Lemmas 2.1 and 2.2 that any subdivision of a map
preserves the characteristic. Define the genus of a graph as the minimum genus of
any orientable surface where the graph embeds.

Corollary 2.3. The genus of (a subdivision of) a minor of a graph G is at most the genus
of G .

PROOF. Let M be a cellular embedding of G with minimal genus g . Any subdivision
H of a minor of G can be obtained by a succession of edge contractions, deletions and
subdivisions. We can perform the same operations on M . By Lemmas 2.1 and 2.2 and
the preceding discussion, the characteristic may only increase during these operations.
It follows that the resulting embedding of H has genus at most g , implying that the
genus of H is at most g .

3 The Genus of a Map

Thanks to Euler’s formula it is quite easy to recover the genus of a map given by a triple
(A,ρ, ι). We have:

g = 1−χ/2= 1− (|V | − |E |+ |F |)/2 (2)

where V , E , F are the set of vertices, edges and faces of the map. For a graph G , a
certificate that it can be embedded in a surface of genus at most g may be given in
the form of a rotation system for G , checking that the genus of the resulting map is
at most g . In particular, a graph is planar if and only if it admits a rotation system of
genus zero. It follows from the above certificate that computing the genus of a graph
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is an NP problem. A greedy approach to compute the genus of G is to compute the
minimum genus of every possible rotation system for G . For a vertex v the number of
possible circular orderings of the incident arcs is (dv −1)! where dv is the degree of v in
G . It ensues that the greedy approach needs to consider as much as

∏

v∈V (G )(dv −1)!
rotation systems. It appears that the problem is hard to solve. Indeed,

Theorem 3.1 (Thomassen, 1993). The graph genus problem is NP-complete.

We first remark that we can restrict the problem to connected simple graphs with
at least three vertices. Moreover, given such a graph G , the existence of a rotation
system on G that triangulates a surface, i.e. such that every facial walk has length
three, reduces to the genus problem. Indeed, the number of vertices and edges being
fixed by G , only the number of faces may vary among rotation systems. Since the faces
of a map correspond to its ϕ-cycles and since every face has length at least 3, we have
3|F | ≤ |A|= |E |/2 with equality if and only if the map is a triangulation. Formula (2)
shows that g is minimal in this case. In other words, we can directly deduce from
its genus whether G triangulates a surface or not. It is thus enough to show the NP
hardness of the triangulation problem. The proof relies on a reduction of the following
problem to the triangulation problem.

Proposition 3.2 ([Tho93]). Deciding whether a cubic bipartite graph contains two
Hamiltonian cycles intersecting in a perfect matching is an NP complete problem.

Recall that a graph is cubic if all its vertices have degree three and it is bipartite if
its vertices can be split into two sets such that no edge joins two vertices in a same
set. A cycle in the graph is Hamiltonian if it goes through all the vertices. Finally, a
perfect matching is a subset of edges such that every vertex is incident to exactly one
edge in the subset.

PROOF OF THEOREM 3.1. We shall reduce the problem of Proposition 3.2 to the trian-
gulation problem. By Proposition 3.2 and the discussion after the theorem, the claim
implies that the genus problem is NP hard, hence NP complete as we already know it
is in NP. Let G be a cubic bipartite graph with a bipartition A ∪B of its vertex set. We
construct another graph by first taking a copy G ′ of G , adding one edge between each
vertex v of G and its copy v ′ in G ′. We further add four vertices v1, v2, v ′1, v ′2 and join v1

and v2 to every vertex in G and similarly join v ′1 and v ′2 to every vertex in G ′. Let H be
the resulting graph. We next construct a graph Q by contracting all the edges of H of
the form v v ′ with v ∈ A and v ′ its copy in G ′. We claim that
Q triangulates a surface if and only if G admits two Hamiltonian cycles intersecting in
a perfect matching.
We first prove the direct implication in the claim, assuming that Q triangulates a sur-
face. In other words there is map with graph Q all of whose faces are triangles. The
local rotation of this map around v1 directly provides a Hamiltonian cycle C1 in G ,
which is the boundary of the union of the triangles incident to v1. Note that every
vertex of C1 is incident to three edges in this union: two edges along C1 and one edge
toward v1. Similarly, the local rotation around v2 provides a Hamiltonian cycle C2. If
C1 and C2 had two consecutive edges in common, then their shared endpoint would
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be incident to exactly two more edges: one toward v1 and one toward v2. However, by
construction v is also incident to its copy in G ′ or to v ′1 and v ′2 if v ∈ A, leading to a
contradiction. Moreover, since G is cubic C2 cannot miss two consecutive edges of C1.
It follows that C1 and C2 share one of every two edges, hence a perfect matching.

To prove the reverse implication of the claim, suppose now that G has two Hamil-
tonian cycles C1 and C2 intersecting in a perfect matching. We consider the following
rotation system on H . If v ∈ A, we let ei , for {i , j } = {1,2}, be the arc of Ci \C j with
source vertex v and we let e3 be the third incident arc, hence in C1 ∩C2. The local
rotation around v is then given by the cycle

(e1, v v1, e3, v v2, e2, v v ′)

The local rotation around a vertex in V (G ′) \A′ is defined analogously and so is the
local rotation around a vertex in A′ or in V (G )\A, except that we exchange the indices
1 and 2 in the above cycle. See Figure 13. For {i , j }= {1, 2}, we define the local rotation

e1
v1

v2

e2e3

e1 v1

v2

v ′

e3e2

C2

C1

v v
v ′

C2

C1

C1 ∩C2
C1 ∩C2

Figure 13: Left, the local rotation at a vertex v ∈ A∪V (G ′)\A′. Right, the local rotation
at a vertex v ∈ A′ ∪V (G ) \A. The vertices v, v ′ are copies of the same vertex in G and
G ′.

around vi as the cycle Ci oriented so that the edges in common with C j (previously
denoted by e3) are directed from V (G )\A to A for i = 1 and from A to V (G )\A for i = 2.
Similarly, we define the local rotation around v ′i as the cycle C ′i oriented oppositely
to Ci , i.e. so that the edges in common with C ′j are oriented from A to V (G ) \A when
i = 1 and from V (G ′)\A′ to A′ when i = 2. It is an exercise to check that the facial walks
of the resulting rotation system have the following form, where {i , j }= {1, 2}:

• A triangle defined by vi and some edge of Ci , or

• A triangle defined by v ′i and some edge of C ′i , or

• a quadrilateral defined by an edge of Ci \C j , its copy in G ′ and the two edges
between their endpoints from G to G ′.

Figure 14 shows some of those facial walks. Hence, by contracting the edges v v ′ of H
with v ∈ A (and its copy v ′ ∈ A′), the quadrilaterals are transformed into triangles and
one obtain a triangular embedding for Q .

It can be shown that the graph genus problem is fixed parameter tractable (FPT)
with respect to the genus. More precisely, the question whether a graph of size n
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v2

v ∈V \A

e2

v1

v ∈ A

e1

v

v ′ ∈ A′

e ′1

e1

v ∈V \A

v2

e3

v ′

v ∈ A

e2

e ′2

Figure 14: Some faces of the rotation system for H .

has genus at most g can be answered in O ( f (g )n ) time where f (g ) is some singly
exponential function of g [Moh99, KMR08]. Interestingly, the genus of the complete
graphs are known. It was conjectured by Heawood in 1890 that the genus of the
complete graph Kn over n ≥ 3 vertices is

g (Kn ) =
¡ (n −3)(n −4)

12

¤

This conjecture was eventually established in 1968 by Ringel and Youngs. The long
proof [Rin74] provides explicit minimal genus embeddings of Kn with a different
construction for each residue of n modulo 12.

4 Homotopy

In a nutshell, two curves drawn on a surface are homotopic if there exists a continuous
deformation between them. This intuitive notion, dating back to Poincaré, naturally
leads to a very rich theory drawing a bridge between topology on one side and group
theory on the other side. We start by introducing the relevant background in group
theory.

4.1 Groups, generators and relations

Although most groups we will be dealing with in this course are infinite, they can often
be very succinctly encoded in terms of generators and relations. The attentive reader
will probably notice some similarities between the formalism established here and
the definitions on polygonal schemata : as we will see later on, this is no coincidence.

Let us consider a set G of generators, and denote by G −1 their inverses G −1 = {g −1 |
g ∈G }. A word is a string over the alphabet G ∪G −1 , and we denote by ε the empty
word. We consider that two words are equivalent if one can switch from one to the
other by adding or removing words of the form g g −1 or g −1g . The set of finite words
quotiented by this equivalence relation can naturally be endowed with the structure
of a group: the law is the concatenation, and the neutral element is ε. Indeed:
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• The concatenation is well-defined with respect to the equivalence relation and
is associative.

• For any word w , w ε = εw =w .

• Each element has an inverse obtained by reversing the order of the letters and
inverting them, e.g., c −1b −1a−1 is the inverse of a b c .

This group is called the free group on the set G , denoted by F (G ).
Now, let us also fix a set R of words called the relations, and consider the free

group F (G ), where one also identifies a word with the word obtained by inserting at
any place a word taken from R or their inverses. This defines another group, which is
formally the quotient of F (G ) by the normal subgroup generated by R 3. This group is
said to admit the presentation <G | R >. So the free group admits the presentation
<G | ;>, generally abbreviated by <G >.

Here are a few examples:

• The group Z is the free group on one letter F ({a }).

• The group < a | a a > is the group Z2 (or Z/2Z).

• The group < a , b | a b a−1b −1 > is the two-dimensional lattice Z2: indeed, the
relation a b a−1b −1 implies that a b = b a , thus the group is abelian, and the
isomorphism with Z2 is the map a 7→ (1, 0), b 7→ (0, 1).

Exercise 4.1. Recognize the groups< a , b | a a b , a b −1b −1 >and< a , b | a m , b n , a b a−1b −1 >
.

Exercise 4.2. Show that any group admits a presentation (with possibly an infinite
number of generators and relations), and that any finite group admits a finite presen-
tation.

4.2 Fundamental groups, the combinatorial way

We start by introducing homotopy in a combinatorial setting, which makes computa-
tions very convenient. The baby case is the case of graphs, which corresponds directly
to free groups.

4.2.1 Fundamental groups of graphs

Let G denote a graph (not necessarily embedded) where the edges are oriented. An
arc is an oriented edge or its inverse, it has an origin o (a ) and a target t (a ) = o (a−1).
A path in G is a sequence of arcs (e1, . . . , en ) such that the target of ei coincides with
the origin of ei+1. A loop is a path such that the target of en coincides with the origin
of e1, this point is called the basepoint of the loop. The trivial loop is the empty loop.
Two loops with a common basepoint x are homotopic if they can be related to each
other by adding or removing subpaths of the type (e , e −1), and a path is reduced if it
does not contain such a subpath.

3Recall that a subgroup H ⊆G is normal if g H =H g for any g ∈G .
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Let x be a vertex of G . The set of homotopy classes of loops in G forms a group,
where the law is the concatenation and the neutral element the trivial loop. Indeed:

• The concatenation is well-defined with respect ot the equivalence relation and
is associative.

• Concatenating with the trivial loop does not change a loop.

• Every loop (e1, . . . , en ) has an inverse (e −1
n , . . . , e −1

1 ).

This group is called the fundamental group of G , denoted by π1(G , x ).

Theorem 4.3. Let T be a spanning tree of G containing the vertex x . Then the funda-
mental group π1(G , x ) is isomorphic to the free group generated by the edges of G that
are not in T .

PROOF. Let C denote the set of edges not in T . For every arc a , one can associate a
loop based at x denoted by γT

a = γ
T
x→o (a ) ·a ·γ

T
t (a )→x , where γT

x→y denotes the unique
reduced path in T between x and y . Then, every loop (e1, . . . , en ) based at x in G is
homotopic to the loop γT

e1
, . . . ,γT

en
, and for every arc a in T , γT

a is homotopic to the
constant loop. Therefore, π1(G , x ) is generated by the loops γT

a for a and arc not in T ,
and since γT

a−1 = (γT
a )
−1, it is enough to pick one arc for every edge of C . Finally, since

the loop γT
a for a not in T is the only one containing a , there is no non-trivial relation

between the loops γT
a . This proves the theorem.

An alternative way of seeing this proof is to observe that the fundamental group of
G is the same as the fundamental group of G obtained after contracting a spanning
tree of G . The resulting graph is a bouquet of circles, and there is one generator for
each circle.

4.2.2 Fundamental groups of surfaces

Now, let S denote a connected surface and let G be a graph cellularly embedded on S .
Similarly as before, a loop and a path in (S ,G ) is a path, respectively a loop in G . An
elementary homotopy between two loops is either a reduction (deletion/addition of
e e −1) or the deletion/addition of a subpath bounding a face of G . This corresponds
to the idea that in a continuous deformation between two curves, one can flip a
face of a cellularly embedded graph, see Figure 15. Elementary homotopies induce
an equivalence relation, called homotopy between loops based at a common point,
denoted by ≡.

As before, the set of homotopy classes of loops based at a vertex x of G forms a
group, where the law is the concatenation. Indeed,

• If γ1 ≡ γ′1 and γ2 ≡ γ′2 are two pairs of homotopic loops, then their concatenations
are homotopic : γ1γ2 ≡ γ′1γ

′
2.

• The concatenation law is associative.
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f f

Figure 15: The two red paths are homotopic since they are related by going over the
face f .

• The trivial loop, denoted by 1x or simply 1 is a neutral element for the concate-
nation law.

• Every loop (e1, . . . , en ) admits (e −1
n , . . . , e −1

1 ) as an inverse.

This group is called the fundamental group of S , denoted by π1(S , x )4.

Exercise 4.4. Let x and y be two vertices of G , then show that π1(S , x ) and π1(S , y ) are
isomorphic. This justifies the common abuse of notation to just write π1(S )without
specifying a base point.

Let T be a spanning tree of G containing a vertex x , and let C denote the set of
edges not in T . The fundamental group of G is the free group on C , and to obtain the
fundamental group of S from it, one just needs to add the relations corresponding
to the faces of G . Formally, for every face f = (e1, . . . , en ) of G , denote by r f the facial
relation induced by f on C , that is, the word obtained by only keeping the ei that are
in C . Then we have the following theorem:

Theorem 4.5. Let S be a connected surface, G be a cellularly embedded graph on S with
a vertex x and a set of faces F , and T be a spanning tree of G containing x . Denote by
C the set of edges not in T and by r f the facial relation induced by a face f of G on C .
Then π1(S ) is isomorphic to the group π presented by

<C | {r f } f ∈F > .

PROOF. As before, every arc a in G corresponds to a loop γT
a obtained by adjoining

the reduced paths in T between x and the endpoints of a . Let us consider the map
γ : C →π1(S )mapping every arc a in C to γT

a . This map induces a morphism of groups
γ′ : F (C )→ π1(S ). As for homotopy in graphs, this map is surjective since any loop
of S is the image by γ of its arcs in C . We will show that its kernel equals the normal
subgroup N generated by the elements r f for f ∈ F , which proves the theorem.

Let w = e1, . . . en be an element of F (C ) such that γ′(w ) ≡ 1. Then it means that
γ′(w ) can be reduced to the trivial loop by a sequence of elementary homotopies. Then
for every reduction over edges of C , the same reduction can be applied to w , and for
every face flip over a face f , the corresponding facial relation r f can be used to modify

4To be accurate, we should write π1(S ,G , x ) but as we will shortly see, this actually does not depend
on G .
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the word w . Thus w can be reduced to the trivial word using the set of relations r f

and the kernel of γ′ is included in N . Reciprocally, an element of N is mapped to the
trivial loop by γ′ since the facial relations r f dictate the face flips to do to simplify the
corresponding relations. This concludes the proof.

Now, let us observe that the group π(S ) stays the same when one

1. contracts an edge of G between two different endpoints,

2. or one removes an edge of G between two different faces.

For 1, let e be the edge we are contracting, and T be a spanning tree of G containing
e . This contraction yields a new tree T ′ with one less edge, but the set C of non-tree
edges stays the same, as well as the set of facial relations. So the group stays the same.

For 2, when one removes an edge e of G between two different faces, one merges
the two adjacent faces f1 and f2 into a single face f . One can pick the spanning tree
so that e is not in it, and thus π1(S ) lost one generator g , and the two relations r1 and
r2 containing g have been merged into one. Observing that this amounts to deleting
every appearance of g in π1(S ) using r1 (or r2), we see that this operation does not
change the group.

Therefore, by the classification of surfaces (or rather its proof), we see that the
graph G can be transformed into one of the polygonal schemata of Theorem 1.6
without changing the fundamental group. In particular, π1(S ) only depends on the
surface S and not the graph G , and it is isomorphic to

• the trivial group if S is a sphere,

• the group< a1, b1, . . . ag , bg | a1b1ā1b̄1 . . . ag bg āg bg > if S is the orientable surface
of genus g ,

• or < a1, . . . , ag | a1a1 . . . ag ag > if S is the non-orientable surface of genus g .

Remark: The operations of contraction and deletion of edges used above can be
interpreted in the light of dual graphs: a graph G embedded on a surface S has a
dual graph G ∗, defined by placing one vertex in each face of G and edges between
adjacent faces. Then, contracting an edge in the primal graph amounts to removing
an edge in the dual graph, and vice versa. Contracting every edge between different
endpoints and removing every edge between different faces amounts to contracting a
spanning tree T of G and a spanning tree T ∗ of G ∗ which are interdigitating, that is,
such that the edges of T are not duals of edges of T ∗, see Figure 16. The use of such
interdigitating trees, also called a tree-cotree decomposition, is an important tool in
the study of embedded graphs, especially from an algorithmic point of view, but we
will not rely on it further in this course.
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Figure 16: A planar graph, its dual graph and a pair of interdigitating spanning trees.

4.3 Fundamental groups, the topological way

The homotopies we defined in the previous section are very combinatorial, and do
not match our a priori intuition of a continuous deformation. In this section, we
define homotopies in a topological way, and show that the corresponding notion of
fundamental group matches the one obtained before.

In a purely topological setting, we are now only considering a surface S , without any
mention of a cellularly embedded graph. A path on S is a continuous map p : [0, 1]→ S ,
and a loop based at x is a path p : [0,1]→ S where p (0) = p (1) = x . A homotopy with
basepoint x between two loops `1 and `2 is a continuous map h : [0,1]→ [0,1]→ S
such that h (0, ·) = `1, h (1, ·) = `2 and h (·,0) = h (·,1) = x . The constant loop at x is
the loop p : [0,1] 7→ x . The inverse of a loop `−1 is defined by `−1(t ) = `(1− t ). The
homotopy class of a loop is the set of loops homotopic to it.

The concatenation of two loops `1 and `2 is the loop defined by `1(2t ) for t ∈ [0, 1/2]
and `2(2t −1) for t ∈ [1/2,1]. The set of homotopy classes of loops based at x forms
a group for the concatenation law, where the neutral element is the constant loop.
Indeed:

• If γ1 ≡ γ′1 and γ2 ≡ γ′2 are two pairs of homotopic loops, then their concatenations
are homotopic : γ1γ2 ≡ γ′1γ

′
2.

• The concatenation law is associative.

• The constant loop, denoted by 1x or simply 1 is a neutral element for the con-
catenation law.

• The inverse of a loop is its inverse for the concatenation law.

This group is called the fundamental group π1(S , x ).

Remark: We are always working with loops with basepoints, and the homotopies
preserve this basepoint. This is needed to obtain a nice algebraic structure: otherwise
there is no natural way to concatenate loops. But the study of homotopies without
basepoints, called free homotopies, is arguably more natural. We will see later on how
to include it in this framework.
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The following exercise mirrors Exercise 4.4:

Exercise 4.6. If S is a connected surface, then for every (x , y ) ∈ S , the groups π1(S , x )
and π1(S , y ) are isomorphic. This justifies the common abuse of notation to just write
π1(S )without specifying a base point.

As the notations suggest, the topological fundamental group and the combinatorial
group turn out to be isomorphic, this is the point of the following theorem.

Theorem 4.7. The topological fundamental group is the same as the combinatorial
fundamental group.

PROOF (SKETCH). Just for the time of this proof, let us denote respectively byπc o m b
1 (S )

and πt o p
1 (S ) the combinatorial and topological fundamental groups. We pick a cellu-

larly embedded graph G on S , which will be used to study πc o m b
1 (S ) (but as we saw,

the group itself does not depend on G ). We will study the map ϕ :πc o m b
1 (s )→πt o p

1 (S )
mapping a homotopy class of loops to the corresponding topological homotopy class
of loops.

Claim 1: The map ϕ is well-defined and is a morphism of groups.
Indeed, if two combinatorial loops γ1 and γ2 are homotopic, then they are related

by a sequence of reductions and face flips. Such reductions and face flips can be
realized using topological homotopies, so their imagesϕ(γ1) andϕ(γ2) are homotopic.
This map behaves nicely under composition laws, so it is a morphism.

Claim 2: The map ϕ is surjective.
Let γ be a topological loop on S . It suffices to prove that it is homotopic to a

combinatorial loop of G . By perturbing by a very local homotopy if needed, one can
assume that γ crosses G a finite number of times. Then between each pair of crossings,
on can push γ on one side (for example the left one), so that one obtains a homotopic
loop lying entirely in G . Now, it may happen that γ backtracks in the middle of an
edge of G , but using a homotopy, one can reduce it so that it does not happen, and
thus we obtain a combinatorial loop of G .

Claim 3: The map ϕ is injective.
Let γ be a combinatorial loop such thatϕ(γ) = 1. This means that some topological

homotopy contracts ϕ(γ) to the empty loop. We want to discretize this homotopy so
that it becomes a concatenation of face flips and reductions. To do that, push every
loop in the topological homotopy into a combinatorial loop of G using the previous
technique. By construction, the difference between two consecutive such loops will
be a series of reductions or face flips, and thus we obtain a combinatorial homotopy.

Remark: The “map” π1 associates a group for any surface, and it can furthermore
be seen as a functor : continuous maps between surfaces also induce morphisms
between their fundamental groups: indeed, such a continuous applications maps
loops to loops, and by taking their homotopy classes, one obtains a morphism. Such
functors are the playground of category theory, which has deep connections with
algebraic topology, but we will not delve at all into these aspects in this course.
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All in all, we have just seen that properties regarding continuous deformations of
loops can be rephrased in a purely group-theoretical point of view. This is very fruitful
from a conceptual perspective, as it provides a strong algebraic structure to work with.
But from an algorithmic perspective, the benefits are not that immediate : the issue
is that working with presentations of groups is very unwieldy, as struggling with the
following exercise showcases:

Exercise 4.8. Show that the fundamental groups of non-homeomorphic surfaces are
not isomorphic.

In fact, most computational problems for group presentations are actually unde-
cidable. This is the case for example for the following problems:

• Deciding whether two groups provided by a finite presentation are isomorphic.

• Deciding whether a given group provided by a finite presentation is trivial.

• Deciding whether an element in a group provided by a finite presentation is
trivial.

We will establish such undecidability results in a later chapter and see that they
translate into undecidable topological problems in higher dimensions. Fortunately,
fundamental groups of surfaces are simpler than general groups, and thus we will be
able to devise algorithms for homotopy on surfaces, but these algorithms will have
a very strong geometric or topological appeal, instead of a group theoretical one.
More generally, studying groups by realizing them as fundamental groups of some
topological space is one of the drives of combinatorial group theory.

4.4 Covering spaces

A covering space of S is a space bS together with a continuous surjective map π : bS → S
such that for every x ∈ S , there exists an open neighborhood U of x such that π−1(U )
is a disjoint union of homeomorphic copies of U . The reader scared by this definition
should look at the example of the annulus on the left of Figure 17.

We will only deal with covering spaces in an informal way, and refer to a standard
textbook in algebraic topology like Hatcher [Hat02] for more precise statements.

The reason we are interested in covering spaces is that they are deeply connected
with homotopy and fundamental groups. Indeed, a covering space allows to lift a
path: if p is a path on S such that p (0) = x = π(bx ) for some bx ∈ bS , there is a unique
path bp on bS starting at bx such that p =π ◦ bp . This is pictured in Figure 17. Note that
loops do not lift necessarily to loops! This “unique lifting property” derives from the
definition of covering spaces: when one sits at a point bx of the covering space, the
local homeomorphism π specifies how to move on bS so that one follows the path p .

Every surface has a unique covering space eS that is simply connected, that is, where
every loop in eS is homotopic to a trivial loop, it is called the universal cover of S . If
S is a sphere, its universal cover is itself, so let us assume that it is not the case. One
way to build this cover is as follows: pick a graph G cellularly embedded on S with a
single vertex and a single face (for example one of the graphs used in the classification
theorem). Cutting S along G gives a polygon and one can tile the plane with this
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U
x

ππ−1(U )

p

bx

bp

Figure 17: A covering of the annulus, and one lift of a path p .

x

p xp
bxbp

Figure 18: Lifting a loop p on the torus to a path on its universal cover.

polygon by putting adjacent copies of this polygon next to each other, so that every
vertex of the tiling is adjacent to the correct number of polygons. This construction is
pictured in Figure 18 for the torus.

For surfaces of higher genus, the same construction works, but the tiling will not
look as symmetric : indeed it is for example impossible to tile the plane with regular
octagons. This is not an issue for our construction, since any tiling with octagons
will do, even if they do not have the same shape. However, an insightful way to deal
with this issue is to use hyperbolic geometry: it is a non-Euclidean geometry on the
open disk that allows for regular tilings of polygons with an arbitrary number of faces.
Figure 19 pictures the universal cover of a genus 2 surface as a hyperbolic tiling.

One can readily check that the spaces we obtain are universal covering spaces of
their respective surfaces, since they are simply connected and the mapπ can naturally
be inferred by the tiling. One key property of universal covers is that a loop on S is
contractible if and only if all its lifts in the universal cover are also loops, as can be
tested on the above examples. This will be leveraged in the next section to design an
algorithm to test contractibility of loops on surfaces.
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Figure 19: The universal covering space of the genus 2 surface.

Remark: The irruption of hyperbolic geometry here is not random at all: one can
show that surfaces of genus at least 2 do not admit Euclidean metrics, but do admit
hyperbolic ones. It is the lift of such a metric that one uses to obtain a hyperbolic tiling.
Hyperbolic geometry plays a primordial role in the study of the geometric properties
of surfaces, and has been used increasingly as well in the design of algorithms for
computational topology.
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