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In the second lecture we saw that a graph could be associated with a vector space,
called the cycle space. We will see that this cycle space can be extended to surfaces
giving birth to the first homology group. We also introduced the fundamental group of
a graph or of a surface in another lecture. Hence, we now have two group structures
that encode the topology of a space X , where X is either a graph or a surface. These
structures are both generated by closed walks in the graph of X and we call a basis any
generating set with the minimum number of closed walks. In order to derive a more
informative notion of minimality we assume that the edges of the considered graph
have a positive weight. This allows to define the weight of a closed walk as the sum
of its edge weights (counted with multiplicity). A minimum weight basis is then a
basis such that the sum of the weights of its members is minimum. The computation
of minimum weight bases has received much attention when X is a graph and was
studied more recently for combinatorial surfaces. Good references on the subject
include a comprehensive survey on cycle bases in graphs by Kavitha et al. [KLM+09]
and another survey on optimization of cycles and bases on surfaces by Erickson [Eri12].
We shall use the qualifiers minimum and shortest interchangeably to designate a walk,
tree or subgraph of minimum weight.
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1 Minimum Basis of the Fundamental Group of a Graph

Let G be a connected graph with basepoint v and let |.| : E →R+ be a weight function.
The fundamental group π1(G , v ) is a free group whose rank is the number of chords
of any spanning tree of G , which is 1−n +m , where n and m are respectively the
number of vertices and edges of G . Indeed, as we saw, every chord e of a spanning
tree T gives rise to a loop γT

v,e obtained by connecting v to each endpoint of the chord
using paths in the tree, and these loops form a basis of π1(G , v ). Not all bases arise
this way but a minimum one may indeed be obtained by this construction. For this,
we take for T a shortest path tree with root v : every vertex w of G is linked to v by a
path in T whose weight is minimum among all the paths from v to w in G . When all
the weights are equal a shortest path tree can be computed by a breadth-first search
traversal in time O (m ). In the general case, one may use Dijkstra’s algorithm [CLRS09]
to compute a shortest path tree in O (m +n log n ) time. Remark that γT

v,e is a shortest
loop through the chord e .

Theorem 1.1. The basis of π1(G , v ) associated with a shortest path tree with root v is a
minimum weight basis.

The following proof is based on an purely algebraic preliminary lemma. First note
that a free group F over a set (x1, x2, . . . , xr ) gives rise to a free Abelian group (this is the
same a freeZ-module) F a b by making all the generators commute. Hence, if we let R be
the set of relations {xi x j = x j xi }1≤i< j≤r , a presentation for F a b is < {x1, x2, . . . , xr } |R >.
We thus have a quotient F � F a b = F / <R > and we denote by [x ] ∈ F a b the image of
any x ∈ F . Note that [x ] can be uniquely written as a linear combination of the [xi ]’s.

Lemma 1.2. Let (x1, x2, . . . , xr ) and (y1, y2, . . . , yr ) be two bases of a free group F . De-
note by yj (x1, x2, . . . , xr ) the expression of yj in terms of the basis (x1, x2, . . . , xr ). Then,
there exists a permutation σ of {1, . . . , r } such that for each i the coefficient of [xi ] in
[yσ(i )(x1, x2, . . . , xr )] is nonzero.

PROOF. The automorphism of F defined by xi 7→ yi , 1 ≤ i ≤ r , quotients to an
automorphism of F a b . Let ci j be the coefficient of [x j ] in [yi (x1, x2, . . . , xr )]. Viewing
F a b as a free Z-module over the [xi ]’s, the matrix (ci j )1≤i , j≤r of this automorphism
has nonzero determinant. It follows that at least one term

∏

1≤i≤r ciσ(i ) of the usual
Leibnitz expansion of the determinant must be nonzero. This implies the lemma.

PROOF OF THEOREM 1.1. Let T be a shortest path tree from v . We denote by e1, e2, . . . , er

the chords of T in G . Let (b1, b2, . . . , br ) be a basis for π1(G , v ). According to the prelim-
inary lemma, there is a permutationσ of {1, . . . , r } such that the coefficient of [γT

v,ei
] in

[bσ(i )] is nonzero. It follows that bσ(i ) goes through ei , hence is at least as long as γT
v,ei

by the remark before the theorem. As a direct consequence
∑

i |bi | ≥
∑

i |γT
v,ei
|.

2 Minimum Basis of the Cycle Space of a Graph

As we saw, the set of Eulerian subgraphs Z (G ) of a connected graph G can be given a
vector space structure over the coefficient field Z/2Z. We also observed that a basis

http://www.gipsa-lab.fr/~francis.lazarus/Enseignement/compuTopo2.pdf
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could be obtained from any spanning tree T of G by considering for each chord e of
T the cycle γT

e composed of e and the path in T connecting e ’s endpoints. Such a
basis is called a fundamental cycle basis. As opposed to the case of the fundamental
group, a minimum weight basis of the cycle space is not always a fundamental cycle
basis. The counterexample in Figure 1 was found by Hartvigsen and Mardon [HM93].
In general, looking for the minimum weight fundamental basis is NP-hard [DPeK82].

1

1

1

1

1

1

Figure 1: Each spanning tree in this graph is a path of length 2. The corresponding
fundamental basis is composed of two cycles of length 2 and two cycles of length 3
leading to a fundamental cycle basis of total weight 10. However, a minimum weight
basis of total weight 9 is given by the three outer cycles of length 2 and the central
triangle.

However, Horton [Hor87] proved that computing a minimum weight basis with Z/2Z
coefficients can be done in polynomial time. His algorithm is based on the greedy
algorithm over combinatorial structures called matroids.

2.1 The Greedy Algorithm

As a vector space, Z (G ) inherits a matroid structure. A matroid is indeed an abstraction
of a vector space that only retains linear dependencies. It is defined by a ground set
S (intuitively the set of vectors) and a nonempty family of independent sets I ⊂ 2S

that satisfies

• the hereditary property: J ∈I and I ⊂ J implies I ∈I , and

• the exchange property: I , J ∈I and |I |< |J | implies that I ∪{x } ∈ I for some
x ∈ J \ I .

A basis is just a maximally independent set. By the exchange property, all the bases
have the same cardinality. Matroid theory was introduced by Hassler Whitney (1935)
and has many applications including combinatorial optimization, discrete geometry,
etc. When the elements of the ground set are weighted, there is a famous greedy
algorithm that determines a minimum weight basis. It works as follows: maintain
an independent set starting from the empty set, and iteratively add an element x to
the current set I if I ∪{x } is independent and if x has minimum weight among such
elements. The algorithm stops when no x can be found, i.e. when I is a basis. In
practice, the elements of S are scanned in increasing order of weights, so that each
time an x is found such that I ∪{x } is independent it can be added to the current I .
The whole set S is thus scanned only once during the algorithm.
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Theorem 2.1. The greedy algorithm returns a minimum weight basis.

PROOF. Let (x1, x2, . . . , xr ) be the basis returned by the greedy algorithm, where xi is
the i th inserted element. By the choice of each element we have |x1| ≤ |x2| ≤ · · · ≤ |xr |,
where |x | is the weight of x . Consider any other basis (y1, y2, . . . , yr ) indexed in non-
decreasing order: |y1| ≤ |y2| ≤ · · · ≤ |yr |. Suppose by way of contradiction that there is
some index i such that |yi |< |xi | and choose such i as small as possible. Then, by the
exchange property we can find y ∈ {y1, . . . , yi } such that {x1, . . . , xi−1, y } is independent.
Since |y | ≤ |yi |< |xi | this would contradict the choice of xi . It follows that |yi | ≥ |xi | for
all i , implying that (x1, x2, . . . , xr ) has minimum weight.

Since the cycle space contains 2r cycles, the greedy algorithm per se does not seem
very efficient. In order to restrict the search of a new basis element at each step of the
algorithm, Horton [Hor87] gave a characterization of the cycles that may belong to a
minimum weight basis.

Lemma 2.2. Suppose b = c +d is a cycle of a basis B of Z (G ). Then either B \{b }∪{c }
or B \ {b }∪ {d } is a basis.

PROOF. If c and d were both in the linear span of B \ {b }, then so would b .

Corollary 2.3. Assuming positive weights, the cycles of a minimum weight basis are
simple.

PROOF. Suppose that b is a non-simple cycle of a minimum weight basis B . Then
b can be written as the sum b = c +d of two edge disjoint cycles. In particular, b is
longer than c or d . By the preceding lemma, we can replace b by c or d in B to get a
shorter basis, contradicting the minimality of B .

Note: if some of the weights cancel, then basically the same proof shows the existence
of a minimum weight basis with simple cycles only.

Lemma 2.4. Let b be a cycle of a minimum weight basis. Let p and q be two edge
disjoint paths such that b = p ·q−1. Then p or q is a shortest path.

PROOF. Let t be a shortest path from the common initial vertex of p and q to their
common last vertex. With a little abuse of notation, we can write b = p · t −1+ t ·q−1.
By Lemma 2.2, b must be no longer than p · t −1 or t ·q−1, implying with Corollary 2.3
that either q or p is a shortest path.

Corollary 2.5. Let v be a vertex of a cycle b of a minimum weight basis. Then b
decomposes into p ·a ·q−1 where a is an arc and p , q are two shortest paths with v as
initial vertex.
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PROOF. Consider the arc sequence (a1, a2, . . . , ak ) of b with v the origin vertex of a1

and the target of ak . Let i be the maximal index such that (a1, a2, . . . , ai ) is a shortest
path. Then b = (a1, a2, . . . , ai ) ·ai+1 · (ai+2, . . . , ak ) and the previous lemma implies that
(ai+2, . . . , ak ) is a (possibly empty) shortest path

When there is a unique shortest path between every pair of vertices, this corollary
allows us to reduce the number of scanned cycles at each addition step of the greedy
algorithm to nm cycles, one for each (vertex, edge) pair. For the rest of this section, we
assume uniqueness of shortest paths and discuss the general case in the next section.
We denote by γv,e the cycle obtained by connecting the endpoints of e with shortest
paths to v . By the uniqueness of shortest paths, γv,e = γT

v,e where T is the shortest path
tree rooted at v .

Proposition 2.6. Let G = (V , E ) be a connected graph with n vertices and m edges and
let r = 1−n +m be the rank of its cycle space. A minimum weight basis of Z (G ) can be
computed in O (n 2 log n + r 2nm ) =O (nm 3) time.

PROOF. By Corollary 2.5, we can restrict the scan step of the greedy algorithm to
the cycles γv,e with (v, e ) ∈V ×E . For each vertex v , we compute a shortest path tree
T in O (n log n +m ) time using Dijkstra’s algorithm. There are r nontrivial cycles of the
form γT

v,e , each of size O (n ). Their computation and storage for all the vertices v thus

requires O
�

n (n log n +m + r n )
�

time. They can be sorted according to their length in
O (r n log(r n )) time. In order to check if a cycle is independent of the current family of
basis elements, we view a cycle as a vector in (Z/2Z)E . We use Gauss elimination to
maintain the current family in row echelon form. This family has at most r vectors
and testing a new vector against this family by Gauss elimination needs O (r m ) time.
The cumulated time for testing independence is thus O (r 2nm ). The whole greedy
algorithm finally takes time

O
�

n (n log n +m + r n ) + r n log(r n ) + r 2nm
�

=O (n 2 log n + r 2nm ).

Note that the above scan can be further reduced by discarding the cycles γv,e that
are not simple. We can also decompose a cycle into a linear combination of a fixed
fundamental basis associated to a tree. The decomposition of a cycle is just given by
its trace over the chords of that tree. This allows to represent the current family of basis
elements by a matrix of size r × r instead of r ×m . Further improvements were pro-
posed [KMMP04, KMMP08, MM09], often based on randomization. In particular, the
algorithm by Kavitha et al. [KMMP08] runs in O (m 2n +mn 2 log n ) time. Using integer
coefficients rather than Z/2Z gives a more general notion of cycle space. However,
this space does not form a matroid in general and the greedy algorithm cannot be
applied anymore. The status of the computation of a minimal weight cycle basis with
integer coefficients is still unknown.
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3 Uniqueness of Shortest Paths

The proof of Proposition 2.6 is based on the uniqueness of shortest paths. In fact,
the proof can be adapted to show that the same algorithm works even if we do not
assume that there is a unique shortest path between every pair of vertices. See [Hor87]
or [Laz14, Lem. 1.6.7]. It may happen for other applications that we strongly need
uniqueness to ensure correctness of the algorithms. We usually get the uniqueness by
a perturbation schema, where the weight of each simple path is replaced by a slightly
different one. Let Px y be the set of simple paths with minimal unperturbed weight
between vertices x and y . The perturbation should be such that Px y contains a unique
path of minimum perturbed weight. In other words, the aim is to get an order on each
Px y so that we can choose the smallest path as the unique shortest path. This can be
achieved by adding an infinitesimal weight of the form (i ) εc (e ) or (i i ) c (e )ε to every
edge e , where ε > 0 is some arbitrarily small number and c (e ) is an appropriately
chosen coefficient.

Using the exponential form (i )we can simply choose pairwise distinct edge coeffi-
cients, for example the edge indices, assuming that they are indexed from 1 to m . This
way, distinct paths are perturbed by distinct polynomials in ε and get distinct weights
for ε small enough. We can view the polynomials as bit vectors of length m where a 1
coordinate at index i indicates the presence of the monomial εi . The ordering in Px y is
simply the lexicographic ordering on the bit vectors. This perturbation schema would
a priori require an extra O (m ) time for comparing path lengths. Cabello et al. [CCE13,
Sec. 6.2] propose to reduce the comparison time to O (log m ) using some sophisticated
data structure. However, their algorithm assumes that two paths need to be compared
only when they intersect along a common prefix.

We can avoid this restriction using the linear form (i i ), that is when the weight of
an edge e is perturbed by c (e )ε. The perturbation of a path is now ε times the sum
of its edge coefficients. Choosing the edge coefficients such that there is a unique
minimum weight sum in each Px y is more tricky than for the form (i ). Cabello et
al. [CCE13, Sec. 6.1] propose the following random perturbation schema based on the
Isolating Lemma of Mulmuley et al. [MVV87, Lem. 1].

Lemma 3.1 (Isolating –). Let I be an arbitrary family of subsets of {1, . . . , m}. For a
vector c = (c1, c2, . . . , cm ) of m integers and for I ∈I , we put c (I ) =

∑

i∈I ci . Choosing c
uniformly at random in {1, . . . , M }m , the probability that c (I ) is minimized by a unique
I ∈I is at least 1−m/M .

PROOF. We suppose thatI contains at least two subsets, since otherwise the lemma
is trivial. For i ∈ {1, . . . , m}we set

I +i = {I ∈I | i ∈ I } and I −i = {I ∈I | i 6∈ I }

Suppose that none of I +i and I −i is empty. Note that the quantities minI∈I +i c (I )− ci

and minI∈I −i c (I ) do not depend on ci . Fixing all the coefficients c j , for j 6= i , the
constant minI∈I −i c (I ) − (minI∈I +i c (I ) − ci ) equals ci with probability at most 1/M .
It follows that minI∈I +i c (I ) = minI∈I −i c (I ) holds with unconditional probability at
most 1/M . Hence, with probability at least 1−m/M , minI∈I +i c (I ) 6=minI∈I −i c (I ) for
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all i such that I +i and I −i are both nonempty. Consider a vector c such that this
occurs and let I0 ∈I for which c (I0) is minimum. Then, any other J ∈I must differ
from I0 by some index i . If i ∈ I0 and i 6∈ J then c (I0) = minI∈I c (I ) = minI∈I +i c (I )
while c (J ) ≥minI∈I −i c (I ). Since minI∈I +i c (I ) 6=minI∈I −i c (I ) we deduce c (J ) > c (I0).
Likewise, we again obtain c (J )> c (I0) if i 6∈ I0 and i ∈ J .

Lemma 3.2. Choose for each of the m edges of an edge weighted graph G an integral
coefficient in {1, . . . , m 4} uniformly and independently at random. Consider the linear
perturbation schema (ii) as described above. With probability at least 1− 1

2m , there is a
unique shortest path between any pair of vertices.

PROOF. For each pair {x , y } of vertices, Let Ix y be the family of subsets of edge
indices corresponding to the paths in Px y . Applying Lemma 3.1 to Ix y , we deduce
that with probability at least 1−1/m 3 there is a unique shortest path between x and
y for the perturbed weights. There are n ≤m vertices in G (we may assume that G is
not a tree). Hence, the

�

n
2

�

pairs of vertices are each connected by a unique shortest

path with probability at least 1−
�

n
2

�

/m 3 ≥ 1− 1
2m .

We shall turn to the computation of minimum bases on surfaces. We first extend the
notion of cycle space to surfaces.

4 First Homology Group of Surfaces

4.1 Back to Graphs

First recall that the cycle space Z (G ) of a graph G = (V , E ) is the space of its Eulerian
subgraphs. One can define such subgraphs thanks to the boundary operator. This
operator δ1 sends any edge to the mod 2 sum of its endpoints. In particular, if e is
a loop-edge, δ1e = 0. By linear extension, δ1 defines a linear map from the vector
space (Z/2Z)E of formal mod 2 sum of edges to the space (Z/2Z)V of mod 2 sum of
vertices. Viewing a subgraph as a mod 2 sum of its edges, it is easily seen that Eulerian
subgraphs correspond to the mod 2 sum of edges with empty boundary. In other
words,

Z (G ) = kerδ1.

We define the mod 2 abelianization of a group A as the quotient A/S (A) by the sub-
group S (A) generated by its squares. Note that S (A) is normal and contains the derived
subgroup [A, A] generated by the commutators [a , b ] = a b a−1b −1. Indeed, one check
that

[a , b ] = (a b a−1)2a 2(a−1b −1)2 and a s a−1 = s [s−1, a ]

Hence, if s is a product of squares, so is any conjugate a s a−1. We can now relate the
cycle space with the fundamental group of a graph thanks to the following mod 2
version of the Hurewicz theorem.
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Proposition 4.1. For any vertex v of a connected graph G the cycle space Z (G ) is iso-
morphic to the mod 2 abelianization of π1(G , v ).

PROOF. Denote by L the set of loops of G with basepoint v . Consider the map
ϕ :L → Z (G ) defined by (a1, a2, . . . , ak ) 7→

∑k
i=1 ai , where the coefficient in the sum

are taken modulo 2. Adding or removing a spur in a loop does not change its image
by ϕ. The map ϕ thus quotients to a morphism ϕ : π1(G , v ) → Z (G ). Let T be a
spanning tree of G and let C = E (G ) \ E (T ) be its set of chords. We know that Z (G )
is generated by the cycles {γT

e }e∈C . Since ϕ(γT
v,e ) = γ

T
e , the map ϕ is onto. Let γ =

γT
v,e1
·γT

v,e2
· · ·γT

v,ek
be a representative of some element of π1(G , v )written over the basis

{γT
v,e }e∈C . Then ϕ(γ) =

∑

e∈C neγ
T
e where ne is the cumulated exponent of γT

v,e in γ.
Hence, the homotopy class of γ belongs to kerϕ if and only if all the ne cancel. This is
exactly saying that γ belongs to the subgroup S (π1(G , v )) of π1(G , v ). We thus have

Z (G )'π1(G , v )/kerϕ =π1(G , v )/S (π1(G , v ))

Exercise 4.2. Given a product w in the generators {x1, x2, . . . , xr } (and their inverses) of
a group Γ , show that w = x n1

1 · x
nr
2 · · · x

nr
1 ·p where each ni is the cumulated exponent

of xi in w and p is a product of commutators. (It might be useful to notice the relation
b a = a b [b −1, a−1].) Deduce that S (Γ ) is equal to the set of products whose cumulated
exponents are all even.

4.2 Homology of Surfaces

The graph G of a combinatorial surface M has its own cycle space Z (G ). However, a
topological surface may have distinct cellularly embedded graphs with non-isomorphic
cycle spaces. In order to get a topologically invariant notion of cycle space, we further
quotient Z (G ) by identifying cycles that bound together a subset of faces of M . More
formally, let C2(M ) := (Z/2Z)F be the vector space of subsets of the set F of faces of M .
The elements of C2(M ) are called 2-chains. The boundary ∂2 f of a face f ∈ F is the
mod 2 sum of the edges of its facial walk. It is clearly a cycle of Z (G ), meaning that
∂1∂2 f = 0. This boundary ∂2 extends linearly to a boundary operatorδ2 : C2(M )→ Z (G ).
Two cycles c , d ∈ Z (G ) are said homologous, which we write [c ] = [d ], if their mod 2
sum is the boundary of some 2-chainσ ∈C2(M ): c −d = ∂2σ. We can now define the
first homology group of M as the space of homology classes:

H1(M ) := kerδ1/Imδ2.

The fact that this homology group is indeed a topological invariant is an immediate
consequence of the invariance of the fundamental group and of the following mod 2
version of the Hurewicz theorem for surfaces.

Proposition 4.3. For any vertex v of a connected map M the first homology group
H1(M ) is isomorphic to the mod 2 abelianization of π1(M , v ).
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PROOF. Let G be the graph of M . As in the proof of Proposition 4.1, denote byL
the set of loops of G with basepoint v and by ϕ :L → Z (G ) the mapping defined by
ϕ(a1, a2, . . . , ak ) =

∑k
i=1 ai . The composition [ϕ] :L → Z (G )→ H1(M ) is compatible

with elementary homotopies in M . This is obvious for the addition or removal of a
spur. If λ ·p ·µ 7→λ ·q ·µ is an elementary homotopy with p ·q−1 the facial walk of a
face f , then ϕ(λ ·p ·µ)−ϕ(λ ·q ·µ) = ∂2 f ∈ Im∂2. Whence [ϕ(λ ·p ·µ)] = [ϕ(λ · q ·µ)]
in H1(M ). It follows that [ϕ] descends to the quotient ϕ : π1(M , v )→H1(M ). On the
other hand, homotopic loops in G are homotopic in M so that we have an onto
morphism π1(G , v ) � π1(M , v ). We also know from the proof of Proposition 4.1
that the morphism π1(G , v )� Z (G ) is onto. We thus have two equal compositions

π1(G , v )� Z (G )� H1(M ) andπ1(G , v )� π1(M , v )
ϕ
→ H1(M ) implying thatϕ is onto.

It remains to prove that kerϕ is the subgroup S (π1(M , v )) generated by the squares
of π1(M , v ) to conclude that H1(M ) ' π1(M , v )/kerϕ is the mod 2 abelianization of
π1(M , v ). Since multiplication by 2 gives zero in H1(M ), we have S (π1(M , v ))⊂ kerϕ.
For the reverse inclusion we consider a loop γwhose homotopy class is in kerϕ, i.e.
such that [ϕ(γ)] = 0. Hence, there must be a 2-chain

∑

j f j such thatϕ(γ) =
∑

j ∂2 f j . For
each j , we choose a vertex v j incident to f j and we let pj be the facial walk of f j starting
at v j . Using the path γT

v,v j
from v to v j in T we form the loop γ j := γT

v,v j
·pj · (γT

v,v j
)−1

with basepoint v . On the one hand, since ϕ(γ j ) = ∂2 f j , we have ϕ(γ) = ϕ(
∏

j γ j ) in
Z (G ). Equivalently, ϕ(γ) +ϕ(

∏

j γ j ) = 0. By Proposition 4.1, the homotopy class of
γ ·
∏

j γ j is in S (π1(G , v )). It is thus in S (π1(M , v )) viewed as a loop in M . On the other
hand, since each γ j is contractible in M , the loops γ ·

∏

j γ j and γ are homotopic in
M . It follows that the homotopy class of γ is in S (π1(M , v )).

Corollary 4.4. Let M be a combinatorial surface of genus g without boundary. We have

H1(M )'

¨

(Z/2Z)2g if M is orientable, and

(Z/2Z)g otherwise.

PROOF. If M is orientable, we know that its fundamental group as combinatorial
presentation π1 '< a1, b1, . . . , ag , bg | [a1, b1] · · · [ag , bg ]>. By Proposition 4.3, we have
H1(M )' π1/S (π1). Since [a1, b1] · · · [ag , bg ] ∈ S (π1), we also have π1/S (π1)' F2g /S (F2g )
where F2g :=< a1, b1, . . . , ag , bg | −> is the free group over {a1, b1, . . . , ag , bg }. Now, it is
easily seen that the mod 2 abelianization of a free group of rank r is the Z/2Z-vector
space of dimension r , whence H1(M )' F2g /S (F2g )' (Z/2Z)2g . A similar proof holds
when M is non-orientable.

5 Minimum Basis of the Fundamental Group of a Sur-
face

Let M be a combinatorial surface with graph G . As in Section 1, we assume that the
edges of G are positively weighted. Given a vertex v of M , a minimum weight basis of
π1(M , v ) is a set of loops with basepoint v whose homotopy classes form a basis of
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π1(M , v ) and whose total weight is minimum. Erickson and Whittlesey [EW05] have
proposed a simple algorithm to compute a minimum weight basis. We first describe
how to formally cut M along a subgraph of G .

5.1 Dual Maps and Cutting

The dual map M ∗ of M is obtained by inverting the roles of vertices and edges in M .
Its graph G ∗ is the dual graph of G . If H is a subgraph of G , we denote by H ∗ the
subgraph of G ∗ induced by the edges dual to the edges of H . We also denote by M \\H
the map with boundary obtained by cut opening M along H . It boils down to double
the edges of H , updating the rotation system of M to include these new edges. Equiv-
alently, if one views M as a polygonal schema, i.e. as a gluing of polygons by pairwise
identifications of their sides, cutting along H amounts to forbid the identification
between the sides that correspond to edges in H . In the dual map, the effect is to
delete the corresponding dual edges. Hence,

Lemma 5.1. The adjacency graph of the faces of M \\H is G ∗−E (H ∗). In particular, the
connected components of M \\H and of G ∗−E (H ∗) are in 1-1 correspondence.

As usual, E (H ∗) designates the set of edges of H ∗.

5.2 Homotopy Basis Associated with a Tree-Cotree Decomposition

Recall that a tree-cotree decomposition (T , D ∗, C ) of M is given by a spanning tree
T of G , a spanning tree D ∗ of G ∗− E (T ∗), and the complementary set of edges C =
E (G ) \ (E (T )∪E (D )).

Lemma 5.2. If (T , D ∗, C ) is a tree-cotree decomposition of M , then C contains 2−χ(M )
edges. In particular the cycle spaces of the graphs T ∪C and D ∗ ∪C ∗ have dimension
2−χ(M )

PROOF. The trees T and D ∗ being spanning we have |E (T )| = |V (M )| − 1 and
|E (D ∗)|= |F (M )| −1. Thanks to Euler formula, we can write

|V (M )|+ |F (M )| −χ(M ) = |E (M )|= |E (T )|+ |E (D ∗)|+ |C |= |V (M )|+ |F (M )| −2+ |C |,

whence |C |= 2−χ(M ).

In analogy with the basis of the fundamental group of a graph associated with a
spanning tree, we can associate a basis of the fundamental group of M with a tree-
cotree decomposition.

Lemma 5.3. Let v be a vertex of M , and let (T , D ∗, C ) be a tree-cotree decomposition of
M . The set of loops {γT

v,c }c∈C is a basis of π1(M , v ).
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PROOF. Since D ∗ is a tree, the gluing of faces of M along the edges of D is a disk. In
other words, M \\(T ∪C ) is a disk. Hence, every edge d ∈ E (D ) cuts this disk into two
disks. Choose one of those disks. Its boundary writes (d , e1, . . . , ek )where each ei is an
edge of T ∪C . This boundary is obviously contractible. By inserting a round-trip to v
in T at each vertex along this boundary, we see that γT

v,d ·γ
T
v,e1
· · ·γT

v,ek
is contractible.

This shows that γT
v,d is in the span of {γT

v,c }c∈C since γT
v,ei

is contractible for every ei in T .
Now, since {γT

v,e }e∈E (D )∪C is a (fundamental) basis of π1(G , v ), it is also a generating set
forπ1(M , v ). In turn this generating set is generated by {γT

v,c }c∈C . Finally, by Lemma 5.2
we note that C contains the minimum number of elements required for a basis of
π1(M , v ).

5.3 The Greedy Homotopy Basis

For each chord e of T , the loop γT
v,e is a shortest loop through e with basepoint v and

we define the weight of the edge e ∗ dual to e as

w (e ∗) = |γT
v,e |,

where |.| denotes the given weight function in G . We consider a maximum weight
spanning tree K ∗ of G ∗−E (T ∗)with respect to the weight function w , and we let C be
the set of edges primal to the chords of K ∗ in G ∗−E (T ∗). We thus have a tree-cotree
decomposition (T , K ∗, C ) and the set of loops

Γ := {γT
v,e }e∈C

is the associated basis of π1(M , v ). Following [EW05], we call Γ a greedy homotopy
basis. The name comes from a greedy computation of the maximum spanning tree K ∗

which makes the loops in Γ appear in a greedy fashion. It results from Proposition 4.3
that the set of homology classes of the loops in Γ is a basis of H1(M ). A greedy factor
of a loop `with basepoint v is any loop in Γ which appears with a non-zero coefficient
in the decomposition of ` in this homology basis.

Lemma 5.4. The weight w (e ∗) of any chord e of T in G is larger or equal to the weights
(with respect to |.|) of the greedy factors of γT

v,e .

PROOF. The set of chords of T is the disjoint union E (K )∪C . If e ∈C , then γT
v,e is its

own and unique greedy factor and the result is trivial. We now assume that e ∈ E (K ).
We put C1 := {c ∈ C | w (c ∗) ≤ w (e ∗)} and C2 := {c ∈ C | w (c ∗) > w (e ∗)}. We consider
the connected graph K ∗

e :=G ∗− (E (T ∗)∪C ∗1 ) = K ∗+C ∗2 . We claim that K ∗
e − e ∗ is not

connected. Otherwise, e ∗ would belong to a cycle of K ∗
e . This cycle would contain an

edge c ∗ in C ∗2 and exchanging e ∗ with c ∗ in K ∗ would produce a spanning tree with
strictly larger weight, contradicting the maximality of K ∗. It ensues from Lemma 5.1
that M \\(T ∪C1) is connected while M \\(T ∪C1∪{e }) is not. Hence, e appears exactly
once in the boundary of each component of M \\(T ∪C1∪{e }). Considering the formal
sum of the faces of one component and its image by the boundary operator, we obtain
that e +κ is 0-homologous for some chain κwith support in T ∪C1. We conclude that
the greedy factors of γT

v,e are contained in {γT
v,c }c∈C1

, as desired.
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Lemma 5.5. Let ` be a loop with basepoint v in G . Any greedy factor of ` has weight at
most |`|.

PROOF. We consider ` as a loop of G and express its homotopy class in the free basis
of π1(G , v ) associated with the chords of T in G : `∼ γT

v,e1
·γT

v,e2
· · ·γT

v,ek
. We assume this

expression reduced, so that each ei , 1≤ i ≤ k , occurs at least once in `. In particular,
|`| ≥w (e ∗i ). Since any greedy factor of `must occur as a greedy factor of some γT

v,ei
, we

can apply Lemma 5.4 to ei and conclude.

We denote byγ1, . . .γ|C | the loops in the greedy homology basis Γ . Similarly to Lemma 1.2,
we can easily show that

Lemma 5.6. For any basis {`i }1≤i≤|C | of π1(M , v ), there exists a permutationτof {1 . . . |C |}
such that for each i ∈ {1 . . . |C |}, the loop γi is a greedy factor of `τ(i ).

It directly follows from the two preceding lemmas that

Proposition 5.7. Any greedy homotopy basis is a minimum weight basis.

In order to compute a greedy homotopy basis one needs to compute a shortest
path tree and a maximum weight spanning tree. A shortest path tree of a graph
with n vertices and m edges can be computed in O (n log n +m ) time using Dijkstra’s
algorithm. Classic maximum (or minimum) weight spanning tree algorithms run1

in O (n log n +m ) time [Tar83]. Since a homotopy basis of a map of genus g has O (g )
loops, and since each loop of a greedy basis may have size O (n )we obtain

Theorem 5.8 ([EW05]). Let M be a finite connected map of genus g without bound-
ary with n vertices and m non-negatively weighted edges. Given a vertex v of M , a
minimum weight basis of π1(M , v ) can be computed in O (n log n + g n +m ) time.

6 Minimum Basis of the First Homology Group of a Sur-
face

6.1 Homology Basis Associated with a Tree-Cotree Decomposition

In analogy with the fundamental cycle basis of a graph associated with a spanning
tree, we can associate a basis of H1(M )with a tree-cotree decomposition.

Lemma 6.1. Let (T , D ∗, C ) be a tree-cotree decomposition of M . The set of cycles {γT
c }c∈C

is a basis of H1(M ).

PROOF. We can either reproduce the proof of Lemma 5.3, replacing contractible by
0-homologous, or directly apply Proposition 4.3.

1A faster O (m ) algorithm exists for embedded graphs. See for instance Sec. 3.1. of Éric Colin de
Verdière course notes.

http://www.di.ens.fr/~colin/cours/all-algo-embedded-graphs.pdf
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6.2 The Greedy Homology Basis

We again assume that the edges of the graph G of M are positively weighted. We also
assume uniqueness of shortest path between each pair of vertices in G , see Section 3.
Analogously to Section 2, we look for a basis of H1(M ) such that the sum of the weights
of the cycles in the basis is minimal. Since H1(M ) is a vector space, the greedy matroidal
algorithm of Section 2.1 remains valid as well as the characterization in Corollary 2.3
and 2.5 of the cycles in a minimum basis. For each vertex v of M we let Tv be a shortest
path tree rooted at v . By Corollary 2.5, we can restrict the cycle scan in the greedy
algorithm to simple cycles of the form γv,e := γTv

v,e , one for each chord e of Tv . In fact,
we can further restrict the scan to a subset of O (g ) candidate cycles per vertex.

Lemma 6.2. The set of loopsLv = {γv,e | e ∈ E (G )\E (Tv )} contains at most 3(1−χ(M )) =
O (g ) distinct homology classes. Furthermore, we can select in O (n log n +m ) time a
subsetSv ⊂Lv of at most 3(1−χ(M )) loops that contains a homologous loop of minimal
weight for each homology class inLv .

PROOF. Following Section 5.1 we use a ∗ superscript to denote duality. Put K ∗ :=
G ∗−E (T ∗v ). Since Tv is a tree, it can be completed to a tree-cotree decomposition of
M and it results from Lemma 5.2 that the cycle space Z (K ∗) has dimension 2−χ(M ).
If e ∗1 , . . . , e ∗k are the edges incident to a vertex dual to a face f of M , then ∂2 f =

∑

i ei =
∑

i γv,ei
, so that

∑

i γv,ei
is null-homologous. This sum can be restricted to ei ∈ E (K )

because γv,ei
is null-homologous otherwise. It follows that γv,e is also null-homologous

whenever e ∗ is a pendant edge in K ∗. We can delete recursively all the pendant edges
in K ∗ since their corresponding cycle is null-homologous. We are left with a subgraph
K ∗

1 without degree one vertex and with the same cycle space as K ∗ . If two edges e ∗

and e ′∗ share a degree two vertex in K ∗
1 we also have that γv,e and γv,e ′ are homologous.

It follows that the number of distinct homology classes is at most the number of
maximal chains, i.e. of maximal paths with degree two internal vertices in K ∗

1 . This is
also the number of edges of the graphs K ∗

2 obtained by contracting each such maximal
chain to a single edge. Because each vertex of K ∗

2 has degree three or more, we have
2|E (K ∗

2 )| ≥ 3|V (K ∗
2 )| by double counting of the vertex-edge incidences. On the other

hand,

2−χ(M ) = dim Z (K ∗) = dim Z (K ∗
1 ) = dim Z (K ∗

2 ) = 1− |V (K ∗
2 )|+ |E (K

∗
2 )|

It ensues that |E (K ∗
2 )| ≤ 3(|E (K ∗

2 )|−|V (K
∗

2 )|) = 3(1−χ(M )) as desired. In practice, we first
compute Tv and the distance of each vertex to the root v in O (n log n +m ) time using
Dijkstra’s algorithm. For any edge e of M , the length of γv,e can then be computed
in constant time. We recursively remove the pendant edges of K ∗ and traverse each
maximal chain of the resulting graph K ∗

1 in linear time, only keeping inSv the loop
γv,e corresponding to the traversed edge e ∗ if the loop has minimum weight in the
maximal chain.

The greedy matroidal algorithm requires to test if a loop is homologically independent
of the already selected loops. To this end we consider a fixed homology basisB :=
{γT

c }c∈C associated with some tree-cotree decomposition (T , D ∗, C ).
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Lemma 6.3. We can compute the homology coordinates with respect toB of each of
the loops inSv in O (g m ) total time.

PROOF. We first compute for each edge e of M , the coordinates of γT
e with respect

toB . This can be done in O (g m ) time for all the edges in D by a simple traversal of
the dual tree D ∗. We then traverse the shortest path tree Tv from its root v in order to
compute for each vertex x the homology coordinates with respect toB of the loop
γv (x ) := γTv

v,x · γ
T
x ,v composed of the two (x − v )-paths in Tv and T respectively. The

traversal needs O (g n ) time, spending O (g ) time per vertex to compute the coordinates
of [γv (x )] = [γv (y )]+[γT

y x ]using the predecessor y of x in Tv . The coordinates of anyγv,e

inSv can now be decomposed into the sum of the coordinates of γv (x ), γT
e and γv (y )

where x , y are the endpoints of e . It thus takes O (g ) time to compute the coordinates
of any loop inSv and the whole computation needs O (g m ) time.

Theorem 6.4 ([EW05]). Let M be a finite connected map of genus g with n vertices and
m weighted edges. A minimum weight basis of H1(M ) can be computed in
O (n 2 log n + g nm + g 3n ) time.

PROOF. We can select O (g n ) loop candidates for the minimal weight basis and
compute their weights in O (n 2 log n+nm ) time according to Lemma 6.2. Their homol-
ogy coordinates with respect toB is computed in O (g nm ) time following Lemma 6.3.
After sorting the O (g n ) candidate loops according to their weight in O (g n log n ) time,
the greedy algorithm consists in scanning the candidate loops in increasing order,
keeping the scanned loop in the minimal basis if it is homologically independent of
the previously selected loops. This last test can be answered in O (g 2) time using Gauss
elimination to maintain the O (g ) selected loops in row echelon form. The whole scan
thus takes O (g 3n ) time. Summing up all the steps we may conclude the theorem.

When g = o (n 1/3), a faster O (g 3n log n ) algorithm was obtained by Borradaile et
al. [BCFN16]. It combines the approach of Kavitha et al. [KMMP08] for the mini-
mum cycle basis with the use of a certain cyclic covering to compute each cycle of the
minimum weight basis.
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