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The purpose of this lecture is to make explicit the limits of computational topology
by showing that some simple and natural questions in topology are undecidable. In
order to make the statement precise we need to define the notion of decidability and
to specify the description of topological spaces we are interested in. Concerning topo-
logical spaces we should consider spaces having a combinatorial description such
as finite simplicial complexes1. Note that many interesting spaces have such a de-
scription: compact topological manifolds of dimensions 2 or 3, compact differentiable
manifolds, etc. See [Man14] for a survey. Concerning decidability there are essentially
two notions. One refers to the independence of a statement with respect to a logical
system. In other words, the statement is undecidable if neither its affirmation nor
its negation can be proved from the axioms of the system using its logical rules. The
existence of such undecidable statements relates to the first Gödel’s incompleteness
theorem. The other notion of decidability refers to a family of problems with YES/NO
answers, such as testing a property over a family of objects, and expresses the exis-
tence of an algorithm to output the answer of any problem in the family. Note that
any finite family of problems for which the answers is provable is always decidable

1Recall that a simplicial complex is a collection of simplices glued in a nice fashion. It is the total
space of an abstract simplicial complex over a set V , which is a family of subsets of V closed under the
operation of taking non-empty subsets.
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in this acception. Indeed, an algorithm to solve the problems just needs to store the
correct answer of each problem. Paradoxically, this is valid even if we do not know yet
the correct answers since the decidability only claims the existence of an algorithm
and not the algorithm itself.

Both notions of decidability may be relevant to computational topology. As an
illustration, consider the contractibility problem of deciding if a closed path can be
continuously deformed into a point in a simplicial complex. We will prove that there
is no algorithm to decide this problem given the path and the simplicial complex as
input. As a stronger statement there exists a simplicial complex for which there is no
algorithm that decides the contractibility of the closed paths in this simplicial complex.
At last, there exists a closed path in some simplicial complex for which it cannot be
logically decided if the path is contractible or not.

Most often, undecidability results in topology are shown by first transforming a
decision problem into a question concerning combinatorial group theory. In turn,
problems about groups are transformed into problems about Turing machines. Ul-
timately, the proofs of undecidability rely on a reduction to the halting problem for
Turing machines. We recommend the survey by Poonen [Poo14] for many undecidable
problems in mathematics.

1 The Halting Problem

1.1 Turing Machines

A Turing machine is a mathematical model for the notion of computation. It was
introduced by Alan Turing in 1936. According to Church-Turing thesis this is a universal
model for the mechanization of computation. It was proved equivalent to other notion
of computation such as recursive functions and λ-calculus.

Formally, a Turing machine is a triple (A ,Q,T ), where A is a finite alphabet
including a special blank character,Q is a finite set of states, andT ⊂A×Q×A×Q×
{R , L} is a transition table specifying how the machine operates on configurations.
Those are words of the form uq v ∈A ∗×Q×A ∗. Such a configuration represents the
machine in state q together with a linear tape marked with the word u v and whose
read/write head is on the first letter in v (the empty word is interpreted as a blank).
Transition a q b p D ∈T applies to any configuration uq v such that a is the first letter
in v . It transforms uq v replacing a with b , the state q by p , and moves the head one
step to the left or right according to whether D equals L or R , respectively.

From the computability perspective there is no loss of generality to consider deter-
ministic machines for which a q b p D ∈ T and a q b ′p ′D ′ ∈ T implies b ′ = b , p ′ = p
and D ′ =D : reading a letter in some state leads to only one new possible configuration.
The machine is halting in a given configuration when no transition applies.

Standard coding of Turing machines

A Turing Machine M is in standard form if its alphabet is a finite subset of
Σ = {blank,1,1′,1′′,1′′′, . . .} and its set of states is a finite subset of {q , q ′, q ′′, q ′′′, . . .}.
One can encode the transition table of M on the six letter alphabet {blank, 1, q ,′ , R , L}
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by concatenating its transitions (of the form 1′q ′1′′q ′′D ), where the prime symbol is
considered as a letter. Finally, replacing q ,′ , R , L by the respective letters 1′, 1′′, 1′′′, 1′′′′,
we obtain a coding of the transition table over the finite alphabet {blank, 1, 1′, 1′′, 1′′′, 1′′′′}.
This coding is the standard code of M and is denoted by dM e.

1.2 Undecidability of the Halting Problem

A set of words W ⊂ A ∗ is decidable, or recursive, if there exists a turing machine
M = (A ,Q,T ) with three states qi , qa , qr ∈ Q, respectively called initial, accepting
and rejecting, such that for every w ∈A ∗ the machine M starting from configuration
qi w reaches a halting configuration in state qa if w ∈W and in state qr otherwise.
In particular M always reaches a halting configuration. Note that W is decidable
if and only if both W and its complementA ∗ \W are semi-decidable. Recall that
W is semi-decidable if there exists a Turing machine halting in an accepting state if
and only if it is given as input a word of W . Although this definition does not require
any behavior for words not in W , it is equivalent to assume that the machine never
stops given such words. Unfortunately, the same definition was given many names
such as semi-recursive, recursively enumerable, computably enumerable, listable
or Turing recognizable. The plurality of names comes from the fact that it is equivalent
to require the existence of a Turing machine that enumerates W , i.e., outputs all its
words one after the other. A decision problem is a set of questions with YES/NO
answers. By extension this problem is decidable, or algorithmically solvable, if the
questions can be encoded as words over a finite alphabet and if the subset of words
corresponding to questions with positive answers is decidable.

Consider the self-halting problem of deciding if a Turing machine M given as
input its own standard code, i.e. starting with the configuration qi dM e, will eventually
reach a halting configuration in the accepting state.

Theorem 1.1. The self-halting problem is semi-decidable but not decidable.

PROOF. That the self-halting problem is semi-decidable is quite clear. Given the
standard code of a Turing machine, it is enough to simulate the corresponding machine
on this same input. The notion of universal Turing machine (see below) provides such a
simulation. By way of contradiction, suppose that the self-halting problem is decidable.
Hence, there exists a Turing machine, say S , that recognizes the complementary
language. In other words, S halts in the accepting case if the input does not correspond
to the standard code of a Turing machine that halts in the accepting state on its own
input, and runs forever otherwise. Let us run S with the initial configuration qi dS e. If S
halts in the accepting state, this means that S does not halt in the accepting state on
its own input, a contradiction. So S must run forever, meaning that S does halt in the
accepting state on its own input, and we have again reached a contradiction.

The general halting problem is to decide, given a machine M and a starting con-
figuration I if M reaches a halting configuration. Since the self-halting problem is a
particular case of the halting problem, we obtain:
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Corollary 1.2. The halting problem is unsolvable.

Universal Turing Machine

A Turing machine T is said universal if for any Turing machine M and any initial
configuration C , starting from configuration qi dM eC the machine T simulates the
computation of M from C and halts in its accepting state if and only if this computation
eventually stops. Though fastidious, one can write a program in his favourite language,
say in C++, to simulate a universal Turing machine. This proves a fortiori its existence.
The idea is to traverse the initial configuration C to “read” its state and the current
symbol (the one that should lie under the reading head of M ). Then, T needs to
traverse dM e in order to find the transition that applies. This transition transforms
C into a configuration C ′ and we obtain the configuration qi dM eC ′ on T . We can
proceed this way until some configuration qi dM eC ′′ is reached, where C ′′ is a halting
configuration for M . In this case, T should stop in its accepting state. Otherwise, T
runs forever.

Theorem 1.3. The halting problem for the universal machine T is unsolvable.

In other words, there is no Turing machine that can decide for any configuration if
T eventually stops starting from this configuration. Indeed, such a Turing machine
would solve the general halting problem by considering configurations of the form
qi dM eC .

2 Decision Problems in Group Theory

Max Dehn (1911) was among the first to work out the connection between topology and
combinatorial group theory. He made explicit that answering to certain topological
questions about spaces could be used to solve some general problems about group
presentations. Recall that a combinatorial presentation 〈S |R 〉 of a group G is defined
by a set S of generators and a set R of words over2 S , called relations, so that G is the
quotient of the free group F (S ) over S by the normal closure of R in F (S ). Hence, the
elements of G are classes of words over S where two words are in the same class if one
can be transformed into the other by a sequence of insertions or removals of

1. factors s s−1 with s ∈ S ,

2. or words in R or their inverses.

We shall only consider finitely presented groups for which S and R are both finite. Most
computational results nonetheless apply to recursively presented groups whose set of
relations are recursively enumerable.

The universal property of free groups states that every map S →G from a set S to
a group G extends uniquely to a group morphism F (S )→G . A useful extension to
group presentations is the following.

2By a word over (or in) S we always mean a finite sequence of elements in S∪S−1, where the elements
of S−1 should be thought of as the inverses of the elements in S .



2. Decision Problems in Group Theory 5

Theorem 2.1 (von Dyck). Let R be a set relations over a set S and let f : S →G be a map
from S to a group G . Then, f extends to a morphism 〈S |R 〉→G if and only if for every
relation r ∈R we have f (r ) = 1G where f (r ) is the natural extension of f to words.

PROOF. By the universal property of free groups f extends to a morphism fS :
F (S )→ G . Denote by C (R ) the normal closure of R in F (S ). If f (r ) = 1G for every
r ∈ R , then C (R ) ⊂ ker fS and fS quotients to a morphism 〈S | R 〉 = F (S )/C (R )→ G .
Conversely, if F (S )/C (R )→G is an extension of f : S →G , then F (S )→ F (S )/C (R )→G
must be fS , so that fS must pass to the quotient. In other words, C (R )⊂ ker fS , implying
f (r ) = 1G for every r ∈R .

2.1 Tietze Tranformations

Clearly, a group has (infinitely) many presentations. One can indeed replace a pre-
sentation 〈S |R 〉 by applying the following Tietze transformations or their inverses to
obtain presentations of the same group.

T1: Add a relation which is a consequence of R .

T2: Add a new generator s with a new relation s w , where w is any word over S .

Here, by a consequence of R it is meant a word r in S representing an element of the
normal closure of R in F (S ), or equivalently, such that r is in the same class as the
trivial word 1 in 〈S |R 〉. It is quite remarkable that presentations of the same group are
always related by such transformations.

Theorem 2.2. Two finite presentations represent the same group if and only if one can
be obtained from the other by a finite sequence of Tietze transformations and their
inverses.

PROOF. Let 〈S | R 〉 and 〈S ′ | R ′〉 be two presentations of the same group. In other
words, there is an isomorphism 〈S ′ | R ′〉 ∼= 〈S | R 〉. The image of any generator s ′ ∈ S ′

under this isomorphism can be expressed as a word s ′(S ) over S . Similarly, denote by
s (S ′) the image of s by the inverse isomorphism. We have,

〈S |R 〉 ∼= 〈S ∪S ′ |R ∪{s ′ · (s ′(S ))−1}s ′∈S ′〉

by repeated applications of T2. Now, looking at the composition

〈S ∪S ′ |R ∪{s ′ · (s ′(S ))−1}s ′∈S ′〉 ∼= 〈S |R 〉 ∼= 〈S ′ |R ′〉

we see that the relations in R ′ and in {s · (s (S ′))−1}s∈S are consequences of R together
with the relations {s ′ · (s ′(S ))−1}s ′∈S ′ (why?). It follows that

〈S ∪S ′ |R ∪{s ′ · (s ′(S ))−1}s ′∈S ′〉 ∼= 〈S ∪S ′ |R ∪R ′ ∪{s ′ · (s ′(S ))−1}s ′∈S ′ ∪{s · (s (S ′))−1}s∈S 〉

by repeated applications of T1. This last presentation is symmetric in prime and
unprime symbols and could thus have been derived from 〈S ′ |R ′〉.
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Exercise 2.3. Let r be a word in S that is a consequence of R . Show that r is freely
equivalent (i.e., inserting or removing s s−1 or s−1s factors) to a word of the form

k
∏

j=1

g j r
ε j

j g −1
j ,

where the g j are words over S , r j ∈R , and ε j ∈ {−1, 1}.
Exercise 2.4. Show that the Tietze transformations T1 and T2 indeed produce isomor-
phic groups. In other words, show that:

〈S |R 〉 ∼= 〈S |R ∪{r }〉 ∼= 〈S ∪{s } |R ∪{s w }〉,

where r is a consequence of R .

2.2 Dehn’s Problems

Dehn identified three fundamental algorithmic problems [Sti87]. Let G = 〈S |R 〉 be a
finitely presented group.

• The word problem: decide if a word over S represents the identity in G .

• The conjugacy problem: decide if two words over S represent conjugate ele-
ments in G .

• The isomorphism problem: decide if two combinatorial presentations repre-
sent isomorphic groups.

In the late 1940’s Markov and Post independently proved that the word problem
in semi-groups is unsolvable. The main idea is to encode the transition of a Turing
machine as relations in a semi-group. In the end the halting problem becomes equiv-
alent to the word problem in the constructed semi-group. The unsolvability of the
word problem for groups is based on similar ideas but singularly more complex. It
was eventually shown by P. S. Novikov in 1955 and almost at the same time by Boone.
The original article by Novikov was 143 pages long. Thanks to the HNN construction
introduced by Higman, Neeumann and Neumann in 1949, Boone (1959) and Britton
(1963) succeeded to reduce the proof to approximately 10 pages.

Theorem 2.5 (Novikov, Boone). There exists a group for which the word problem is
unsolvable. In particular, the word problem for groups (given a group and a word as
input) is unsolvable.

The simplest example of a group with unsolvable word problem has 4 generators
and 12 relations, see Borisov [Bor69]. Since the word problem is a particular case of
the conjugacy problem, we immediately infer that

Corollary 2.6. The conjugacy problem for groups is unsolvable.
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The generalized word problem is to decide if a word over the generators S of a
presentation P belongs to some subgroup of P specified by a set of generators given
as words over S .

Theorem 2.7. The generalized word problem is unsolvable.

Theorem 2.8 (Adyan 1957, Rabin 1958). The isomorphism problem for groups is un-
solvable.

A Markov property for groups is one that is satisfied by at least one group with
finite presentation and such that there exists a group H with finite presentation such
that any group including H as a subgroup does not satisfy the property. Being the
trivial group, or being Abelian are Markov properties (why?). Being the fundamental
group of a 3-manifold is also a Markov property because there exist finitely presentable
groups which cannot appear as subgroups of 3–manifold groups.

Theorem 2.9 (Adyan, Rabin). If P is a Markov property, then the problem of deciding if
a finite presentation satisfies P is unsolvable.

While those negative results assert that the basic decision problems in group the-
ory are unsolvable in general, there are positive results for specific classes of groups.
For instance, as we saw in a previous lecture, the word and conjugacy problems are
solvable for surface groups. It results from the classification of surfaces that the isomor-
phism problem is also solvable for surface groups. A much stronger result claims that
those problems are solvable for the class of fundamental groups of closed, orientable
3–manifolds. However, none of those groups are algorithmically recognizable. Indeed,
the trivial group occurs as the fundamental group of a surface group and of a closed,
orientable 3–manifold group. The recognition of such groups would thus allow to
decide whether a given finite presentation describes the trivial group, in contradic-
tion with Theorem 2.8. See also the survey on decision problems for 3–manifolds by
Aschenbrenner, Friedl and Wilton [AFW15] for more details.

We postpone the proof of the undecidability of the word problem to Section 4. In
the next section, we shall deduce the undecidability of topological problems from the
above negative results in group theory.

3 Decision Problems in Topology

3.1 The Contractibility and Transformation Problems

Given a closed path in a simplicial complex, the contractibility problem is to decide
if the path can be deformed continuously to a point in the complex. Likewise, given
two closed path in a simplicial complex, the transformation problem is to decide if
the paths can be deformed continuously one into the other in the complex. These are
extensions of the corresponding problems we saw in the lecture on the homotopy test
for surfaces.

http://www.gipsa-lab.fr/~francis.lazarus/Enseignement/compuTopo4.pdf
http://www.gipsa-lab.fr/~francis.lazarus/Enseignement/compuTopo4.pdf
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Proposition 3.1. The word and conjugacy problems respectively reduce to the con-
tractibility and transformation problems in 2-complexes.

The proof uses a simple construction that associates a two dimensional complex
C (〈S |R 〉)with every group presentation 〈S |R 〉. The complex is built from a bouquet of
circles, one for each generator in S , and a set of disks, one for each non-trivial3 relation
r ∈ R . If r = s ε1

1 · · · s
εk

k , the boundary circle of the corresponding disk is subdivided
into k subarcs and glued along the bouquet of circles in such a way that the i th
arc is mapped onto the circle corresponding to generator si traversed in the same
(εi = 1) or opposite (εi =−1) direction. By a repeated application of the Seifert–van
Kampen theorem4, the fundamental group of the resulting two dimensional complex
is isomorphic to 〈S |R 〉:

π1(C (〈S |R 〉))∼= 〈S |R 〉.

Note that the bouquet of circles can be seen as a graph with one vertex and with one
loop edge per generator. This graph is the 1-skeleton ofC (〈S |R 〉).

PROOF OF PROPOSITION 3.1. Given a word w = s ε1
1 · · · s

εk

k on the generators of a pre-
sentation 〈S | R 〉, we consider the closed path `w of length k whose i th edge is the
loop edge of the 1-skeleton of C (〈S | R 〉) corresponding to si , traversed in the same
(εi = 1) or opposite (εi =−1) direction. The homotopy class of `w inC (〈S |R 〉) is the
class of w in 〈S | R 〉, so that w represents the identity in 〈S | R 〉 if and only if `w is
contractible. Namely, the word problem for w in 〈S |R 〉 reduces to the contractibility
problem for `w inC (〈S |R 〉). Now, given two words u and v and their corresponding
closed paths `u and `w inC (〈S |R 〉)we saw in the lecture on the homotopy test that
`u and `w are (freely) homotopic if and only if their homotopy classes are conjugates
in the fundamental group ofC (〈S | R 〉). It follows that the conjugacy problem for u
and v is equivalent to the transformation problem for `u and `w .

Exercise 3.2. A 2-complex can be described as a graph, allowing loop and multiple
edges, and a collection of polygons, allowing monogons and bigons, such that the
boundary of each polygon is attached to a closed path in the graph. Each side of the
boundary should be attached to a single edge, but the closed path need not be simple.

The barycentric subdivision of such a 2-complex is obtained by first inserting
a vertex in the middle of each edge in the graph and in the middle of each side of
the polygons, then triangulating each polygon by inserting a vertex at the center
and joining this vertex to the boundary vertices (including the new ones) with new
edges. Show that three barycentric subdivisions ofC (〈S |R 〉) always suffice to obtain
a simplicial complex.

Corollary 3.3. There exists a 2-dimensional complex for which the contractibility
problem is unsolvable. In particular, the contractibility problem is unsolvable for
2-complexes. The same is true for the transformation problem.

3For each trivial relation ”1” we may also attach a sphere to the vertex of the bouquet. See the
construction of Section 3.2.

4The version we need here is the following. If X =U ∪D is a CW complex obtained by attaching a
disk D along its boundary to the 1-skeleton of a connected CW complex U , then (omitting the base
point) π1(X ) is the quotient of π1(U ) by the normal subgroup generated by the loop ∂ D →U .
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PROOF. This follows directly from Theorem 2.5 and the previous Proposition 3.1.

In fact, there exists a 2-dimensional complex and a closed path in this complex such
that the contractibility of the path cannot be decided! The proof relies on the theory
of Diophantine equations. In the famous list of 23 problems published in 1900 by
Hilbert, the tenth problem asks for an algorithm to decide if a multivariable polynomial
equation with integer coefficients has a solution in integers. Such equations are said
Diophantine when one is indeed looking for integral solutions. In 1970, Matiyasevich
succeeded to prove that Hilbert tenth problem is unsolvable by showing that any
semi-decidable set of natural numbers is Diophantine, i.e., has the form

{n ∈N | ∃(n1, . . . , nk ) ∈Zk : p (n , n1, . . . , nk ) = 0}

for some polynomial p with integer coefficients in k + 1 variables. Now, the set of
statements in any formal system with recursively enumerable description (axioms and
inference rules) can be numbered so that the theorems form a semi-decidable subset.
By Gödel first incompleteness theorem, such a system, assuming it can express basic
facts about natural numbers, has a statement that can neither be proved or disproved
in the system (such as stating its own consistency, which cannot be proved by Gödel
second incompleteness theorem). If n is the number of an undecidable statement
and p is the Diophantine equation for the set of theorems, then it cannot be decided
if p (n , ·) has a solution. (See [Jon82, CM14] for explicit constructions.) More precisely,
it cannot be proved that p (n , ·) has no solution (if p (n , ·) had a solution, this solution
would provide its own proof). Hence, considering a Turing machine M that looks for
a solution of p (n , ·), we cannot prove that the machine runs indefinitely given p (n , ·)
as input. In Section 4 we shall construct, for every Turing machine and every input, a
group presentation P with a word w in its generators such that the machine eventually
halts after being given the input if and only if w represents the identity in P . This
provides a 2-complexC (P ) and a closed path corresponding to (an encoding of) p (n , ·)
for which we cannot prove that the path is non-contractible.

Remark 3.4. The results in this section extend to four dimensional manifolds since any
finitely presented group can be realized as the fundamental group of a 4-manifolds
that can effectively be computed (Dehn 1910).

3.2 The Homeomorphism Problem

The homeomorphism problem is to decide if two given combinatorial spaces, say
simplicial complexes, are homeomorphic. Since we know that the isomorphism prob-
lem is unsolvable (Theorem 2.8), it is tempting to use the 2-complexC (P ) associated
to a group presentation P to reduce the isomorphism problem to the homeomorphism
problem and conclude that this last one is also unsolvable. Indeed, if the complexes
C (P ) andC (Q ) corresponding to the group presentations P and Q are homeomorphic,
then their fundamental groups, hence P and Q , are isomorphic. However, different
presentations of the same group may lead to non-homeomorphic 2-complexes so that
we cannot conclude that the group are distinct when the corresponding 2-complexes
are not homeomorphic. As a simple example consider the presentations 〈{s } | {s }〉,
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〈{s } | {s , s }〉, and 〈{s } | {s ,1}〉 of the trivial group. The corresponding 2-complexes
are respectively homeomorphic to a disk, a sphere, and a sphere attached to a disk
through a point. In order to prove the unsolvability of the homeomorphism problem
one needs a presentation-invariant construction of a complex whose fundamental
group is the given group. This was eventually achieved by Markov, using four dimen-
sional manifolds rather than 2-complexes. Markov’s proof is based on a Seifert and
Threlfall construction (1934) using manifold surgery. Following Stillwell, we shall rely
on a construction of Boone, Haken and Poénaru (1968).

Theorem 3.5 (Markov, 1958). The homeomorphism problem is unsolvable for mani-
folds of dimension 4 or larger.

PROOF. Given two presentations P and Q we shall construct 4-manifold complexes
C ′(P ) andC ′(Q ) such that P ∼=Q if and only ifC ′(P ) andC ′(Q ) are homeomorphic.
Since isomorphic presentations are related by Tietze transformations (Theorem 2.2) a
solution is to provide a construction whose homeomorphism type is invariant by Tietze
transformations. The above examples show that this is not the case forC (P ). It turns
out that the extra sphere arising from the trivial relation in the examples is essentially
the only obstruction to an invariant construction. To overcome this problem Boone et
al. introduce three modifications.

1. If P has p generators and m relations and Q has q generators and n relations,
first add p +n + 1 trivial relations (1) to P and q +m + 1 trivial relations to Q .
Denote by P ? (p +n +1) and Q ? (q +m +1) the resulting presentations.

2. Replace the 2-complexesC (P ) andC (Q ) by their thickening in R5. First note
that any 2-complexC can be triangulated (see Exercise 3.2) and that any such
triangulation has a piecewise linear (PL) embedding in R5. For ε > 0, letC ε be
the set of points at distance at most ε fromC inR5. When ε is small enoughC ε

deform retracts5 ontoC , hence has the same fundamental group asC . Moreover,
C ε can be triangulated and such a triangulation can be computed fromC . We
setC ′(P ) to the boundary of the 5-manifoldC ε(P ? (p +n +1)) andC ′(Q ) to the
boundary ofC ε(Q ? (q +m +1)).

3. In order to prove the invariance by Tietze transformations, replace the addition
of a consequence relation (T1) by four transformations T11, T12, T13 and T14:

T11 : replace a relation r by s s−1r or s−1s r for some generator s ,

T12 : replace a relation u v w by its cyclic permutation v w u ,

T13 : replace a relation r by r −1,

T14 : replace r by r r ′ where r, r ′ are the i th and j th relations, i 6= j .

Hence, transformation T1i replaces a relation rather than adding a new one. It
clearly produces isomorphic presentations (prove it!).

5A retraction is a continuous map from a topological space onto a subspace whose restriction to
the subspace is the identity map. A deformation retraction is a homotopy between the identity map
and a retraction.
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Claim 1. Let P = 〈S | R 〉 and P ′ = 〈S | R ∪ {r }〉, where r is a consequence of R . Then
P ? 2 may be converted to P ′ ? 1 using transformations T11, . . . , T14 and T2 and their
inverses.

PROOF. By Exercise 2.3, we may write r =
∏k

j=1 g j r
ε j

j g −1
j . By a combination of

T11, . . . , T14 and their inverses, we can transform the second of the two extra relations in
P ?2 into g j r

ε j

j g −1
j . We can then use transformation T14 to accumulate such factors in

the first extra relation, resetting each time the second extra relation to 1 by the reverse
transformations used to get g j r

ε j

j g −1
j . The details are left to the reader.

Claim 2. If P and Q are isomorphic then we can transform P ? (n +m +1) into Q ? (n +
m +1) using a sequence of transformations T11, . . . , T14 and T2 and their inverses.

PROOF. Let P = 〈S | R 〉 and Q = 〈S ′ | R ′〉. Using the notations in the proof of
Theorem 2.2 we first transform P ?(p+n+1) into 〈S∪S ′ |R∪{s ′ ·(s ′(S ))−1}s ′∈S ′〉?(p+n+1)
by repeated applications of T2. We further mimic the proof of Theorem 2.2 using
combinations of transformations T11, . . . , T14 in place of T1. By Claim 1, we obtain this
way the isomorphic presentation 〈S ∪S ′ |R ∪R ′∪{s ′ · (s ′(S ))−1}s ′∈S ′ ,{s · (s (S ′))−1}s∈S 〉 ?1
which is symmetric in prime and unprime symbols and could thus have been derived
from Q ? (q +m +1).

Claim 3. If presentation P2 results from presentation P1 by a transformation T11, . . . , T14

or T2, thenC ε(P2) is homeomorphic toC ε(P1).

PROOF. The claim is trivial for transformations T12 and T13 since the 2-complexes
C (P1) and C (P2) are the same in those cases. Consider now the transformation T11

applied to P1. It replaces one of its relations r by s s−1r (or s−1s r ). Let P0 be P1 minus the
relation r , which is also P2 minus the relation s s−1r . The 2-complexC (P1) is obtained
from C (P0) by attaching a disk D to the closed curve corresponding to r in the 1-
skeleton ofC (P0). Disk D intersects the thickeningC ε(P0) in a simple closed curve `1

which cuts D into a smaller disk D1 outsideC ε(P0). So,C ε(P1) is the union ofC ε(P0)
and the thickening D ε

1 of D1. Likewise,C ε(P2) is the union ofC ε(P0) and the thickening
D ε

2 of a disk D2 that intersectsC ε(P0) in a simple closed curve `2. Now, `1 and `2 differ
by a thin “tongue” close to the path s s−1. Hence, there is a homeomorphism (in fact an
ambient isotopy) ofC ε(P0) sending `2 to `1. We can extend this homeomorphism to
an homeomorphism betweenC ε(P2) =C ε(P0)∪D ε

2 andC ε(P1) =C ε(P0)∪D ε
1 . Similar

constructions hold for the last two transformations T14 and T2. See [Sti93, Sec. 9.4.4]
for the details.

We are now ready to prove thatC ′(P ) andC ′(Q ) are homeomorphic if and only if P
and Q are isomorphic. Recall that the fundamental group of C ε(P ? (p + n + 1)) is
P ? (p +n+1)∼= P . SinceC ε(P ? (p +n+1)) is a 5-manifold, removing its 2-dimensional
coreC (P ? (p +n +1)) does not change its fundamental group. Moreover, sinceC ε(P ?
(p+n+1))\C (P ?(p+n+1))deform retracts onto the boundary ofC ε(P ?(p+n+1)) they
also have the same fundamental group. We conclude that π1(C ′(P )) ∼= P . Likewise,
π1(C ′(Q ))∼=Q . It follows that P and Q are isomorphic wheneverC ′(P ) andC ′(Q ) are
homeomorphic.
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Suppose now that P and Q are isomorphic. According to Claim 2, P ? (p +n +1)
can be converted to Q ? (q +m +1) using a sequence of transformations T11, . . . , T14 and
T2 and their inverses. Following Claim 3,C ε(P ? (p +n +1)) andC ε(Q ? (q +m +1)) are
homeomorphic and so are their boundariesC ′(P ) andC ′(Q ).

Exercise 3.6. Prove that any finite 2-dimensional simplicial complex has a PL embed-
ding in R5.

Exercise 3.7. Provide the details in the proof of the above Claim 1.

Quite surprisingly, while there is no algorithm to decide whether two 2-complexes
have isomorphic fundamental groups, the homeomorphism problem for 2-complexes
is solvable! This results from the existence of a normal form for 2-complexes due
to Whittlesey [Whi58, Whi60]. This normal form easily leads to an equivalence be-
tween the homeomorphism problem for 2-complexes and the graph isomorphism
problem [STP94, DWW00]. The homeomorphism problem is also solvable for closed,
oriented, triangulated 3-manifolds as recently proved by Kuperberg [Kup15]. The
proof relies on the geometrization theorem conjectured by Thurston and proved
by Perelman. This geometrization theorem provides a canonical decomposition of
3-manifolds into elementary pieces that can be algorithmically recognized.

4 Proof of the Undecidability of the Group Problems

In this Section we give a complete proof of Theorems 2.5, 2.7 and 2.8. We follow the
proof by Stillwell [Sti82, Sti93]6. A first step is two replace Turing machines by the
Z2-machine formalism.

4.1 Z2-Machines

We can interpret a Turing machine M = (A ,Q,T ) as a set of transformations over
Z2. To this end we associate with every letter and state of M a distinct digit in base
β between 0 and β −1, where β = |A |+ |Q|. For a word w in (A ∪Q)∗, letB (w ) be
the integer in base β whose digits are associated with the letters and states of w , in
the same order. We encode a configuration uq v of M as a couple (B (uq ),B (v̄ )) of
integers, where v̄ = v1v2 . . . vk = vk . . . v2v1. Every transition of M may be interpreted as
a partial transformation over Z2. Precisely, we associate with every transition a q b p L
the l -transformations:

(β 2U +B (c q ),βV +B (a )) l→ (βU +B (p ),β 2V +B (b c ))

corresponding to the transitionsB−1(U )c q aB−1(V ) 7→B−1(U )p c bB−1(V ). Those
transformations can be written as

(β 2U +Al ,βV +Bl )
l→ (βU +Cl ,β 2V +Dl )

6Another interesting but incomplete presentation is proposed by Andrews [And05].
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for some appropriate numbers Al , Bl , Cl , Dl . Those four numbers determine the l -
transformation. Note that a single transition gives rise to a number |A |of l -transformations,
one for each c ∈A . Similarly, every transition a q b p R is associated the r -transformations:

(βU +B (q ),β 2V +B (c a ))
r→ (β 2U +B (b p ),βV +B (c ))

which write
(βU +Ar ,β 2V +Br )

r→ (β 2U +Cr ,βV +Dr )

for appropriate Ar , Br , Cr , Dr .
For numbers X , Y , X ′, Y ′, we write (X , Y )

s→ (X ′, Y ′) if (X ′, Y ′) is the result of an
s -transformation, s ∈ {l , r }, applied to (X , Y ). More generally, we write

(X , Y )
∗→ (X ′, Y ′)

if (X ′, Y ′) is obtained from (X , Y ) by applying a finite sequence of transformations.
Hence, M changes from a configuration to another one by a sequence of transitions if
and only if (X , Y )

∗→ (X ′, Y ′) for the corresponding Z2-couples. We finally write

(X , Y )
∗↔ (X ′, Y ′)

if there exist Z2-couples (X , Y ) = (X0, Y0), (X1, Y1), . . . , (Xn , Yn ) = (X ′, Y ′) such that, for

0≤ i < n , either (X i , Yi )
si→ (X i+1, Yi+1) or (X i+1, Yi+1)

si→ (X i , Yi ), where si ∈ {l , r }.
We shall prove that the halting problem for Turing machines is Turing reducible to

the generalized word problem. For this, we consider the Z2-machine Z corresponding
to an arbitrary deterministic Turing machine. We then construct a group KZ and a 1-1
map p :Z2→ KZ so that the statement

Z , starting from some (u , v ) ∈Z2, eventually stops
is equivalent to p (u , v ) belonging to a certain subgroup of KZ . We start recalling
fundamental constructions in group theory.

4.2 Useful Constructs in Combinatorial Group Theory

Free Groups and Free Products

Recall that a free group over a set S is the group F (S ) = 〈S | −〉 of words over S modulo
the insertion of trivial relations s s−1 and s−1s , s ∈ S .

A relation between elements of a group is any product of those elements and their
inverses which is the identity in the group. A relation is reduced if it does not contain
two inverse consecutive factors. A subgroup H of a group G is free if H is isomorphic
to a free group. A subset S ⊂G is a free basis for the subgroup it generates if there is
no non-trivial reduced relations between the elements of S . In this case, the subgroup
generated by S is a free subgroup isomorphic to F (S ).

The free product of two groups with presentations 〈S |R 〉 and 〈S ′ |R ′〉 is the group
〈S |R 〉 ∗ 〈S ′ |R ′〉 := 〈S ∪S ′ |R ∪R ′〉 (here, S ,S ′ must be considered as disjoint sets even
when 〈S |R 〉 ∼= 〈S ′ |R ′〉). The free product only depends on the group factors and not
on the used presentations7. The normal form theorem for free products says that

7Free products can be defined by a universal property.
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any non-trivial element of G ∗H may be uniquely written as an alternating product
of non-trivial elements of G and non-trivial elements of H . In particular, G and H
embeds as subgroups of G ∗H .

HNN Extension and Britton’s Lemma

Given a group G = 〈S |R 〉 and an isomorphismϕ : A→ B between two subgroups A and
B of G , Graham Higman, Bernhard Neumann et Hanna Neumann (1949) established
the existence of a group G ∗ϕ containing G as a subgroup and such that ϕ : A → B
becomes an inner automorphism (A and B are conjugate subgroups) in G ∗ϕ. More
precisely,

Definition 4.1. The HNN extension of G relatively to ϕ is the group

G ∗ϕ := 〈S ∪{t } |R ∪{ϕ(a ) = t −1a t }a∈A〉

where t is a new generator qualified as stable.

An essential property of HNN extensions is the existence of some kind of normal
forms.

Theorem 4.2 (Normal forms for HNN extensions). Let TA be a set of right coset repre-
sentatives of A in G , with 1 ∈ TA. Similarly, let TB be a set of right coset representatives of
B in G , with 1 ∈ TB . Every element of G ∗ϕ can be written uniquely in the normal form
g0t ε1 g1t ε2 . . . t εn gn , for some g i ∈G , εi ∈ {−1, 1} satisfying

• εi = 1 implies g i ∈ TB ,

• εi =−1 implies g i ∈ TA,

• there is no subsequence t ε1t −ε with ε ∈ {−1, 1}.

It results in the following Britton’s lemma.

Lemma 4.3 (Britton, 1963). If a product g0t ε1 g1t ε2 . . . t εn gn represents the identity in
G ∗ϕ, where g0 ∈G , g i ∈G and εi ∈ {−1, 1}, ∀i ∈ [1, n ], then either n = 0 and g0 =G 1, or
for some i ∈ [1, n −1]we have

• either εi =−1,εi+1 = 1 and g i ∈ A,

• or εi = 1,εi+1 =−1 and g i ∈ B .

Another easy consequence of the normal form theorem is that G , A, B and Z
(generated by the stable generator) embed in G ∗ϕ (the normal forms of their elements
reduce to themselves).
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4.3 Undecidability of the Generalized Word Problem

Let
K = 〈x , y , z | [x , y ]〉 and p : Z2 −→ K

(u , v ) 7−→ (x u y v )−1z x u y v

Note that K ∼= 〈x , y | [x , y ]〉 ∗ 〈z | −〉 ∼=Z2 ∗Z.

Lemma 4.4. The image of Z2 under the map p forms a free basis of a free subgroup of
K . In particular, p is one-to-one.

PROOF. Let w = p (u1, v1) j1 ·p (u2, v2) j2 . . . p (un , vn ) jn be a reduced product of p (u , v )
factors, i.e., such that (ui , vi ) 6= (ui+1, vi+1) and ji 6= 0. Substituting the p (ui , vi ) with
their values and using that x and y commute in K , we get

w =K x−u1 y −v1 z j1 x u1−u2 y v1−v2 z j2 . . . x un−1−un y vn−1−vn z jn x un y vn

From the normal form theorem of free products, if w is the identity in K , then it
contains a factor x ui−ui+1 y vi−vi+1 which is 1 in 〈x , y | [x , y ]〉. However this is in con-
tradiction with the hypothesis that (ui , vi ) 6= (ui+1, vi+1). It follows that the p (ui , vi )
constitute a free basis.

With every l -transformation, we associate a morphism

φl :< x β
2
, y β , p (Al , Bl )>→< x β , y β

2
, p (Cl , Dl )>

between the two subgroups of K respectively generated by x β
2
, y β , p (Al , Bl ) and

x β , y β
2
, p (Cl , Dl ). This morphism is defined by x β

2 7→ x β , y β 7→ y β
2

and p (Al , Bl ) 7→
p (Cl , Dl ). That this indeed defines a morphism is not obvious, see the next lemma. We
similarly associate with every r -transformation the morphism

φl :< x β , y β
2
, p (Ar , Br )>→< x β

2
, y β , p (Cr , Dr )>

defined by x β 7→ x β
2
, y β

2 7→ y β , p (Ar , Br ) 7→ p (Cr , Dr ).

Lemma 4.5. The mapsφl andφr are well-defined isomorphisms.

PROOF. Let ρl be the (inner) automorphism acting by conjugation by x−Al y −Bl .
This morphism sends < x β

2
, y β , p (Al , Bl )> isomorphically onto < x β

2
, y β , z >. Simi-

larly, we have an inner automorphismθl sending< x β , y β
2
, p (Cl , Dl )>onto< x β , y β

2
, z >.

Note that < x β
2
, y β , z > as a subgroup of K is equal to < x β

2
, y β > ∗ < z > (show in-

clusion in both directions) and similarly < x β , y β
2
, z >=< x β , y β

2
> ∗ < z >. Now,

the map x β
2 7→ x β , y β 7→ y β

2
induces an isomorphism α :< x β

2
, y β >→< x β , y β

2
>

between subgroups of 〈x , y | [x , y ] |'〉Z2. The “free product” of this isomorphism with
the identity over < z > is an isomorphism. We can thus setφl = θ −1

l ◦ (α ∗ I d<z>) ◦ρl ,
noting that both sides of the equality coincide on x β

2
, y β and p (A`B`). An analogous

proof holds forφr .

We can thus consider the HNN extension K ∗φl
of K byφl . Let tl be the stable generator

of this extension.
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Lemma 4.6. (u , v )
l→ (u ′, v ′) if and only if t −1

l p (u , v )tl = p (u ′, v ′) in K ∗φl
. Likewise,

(u , v )
r→ (u ′, v ′) if and only if t −1

r p (u , v )tr = p (u ′, v ′) in K ∗φr
.

PROOF. If (u , v )
l→ (u ′, v ′) then for some numbers U , V : u = β 2U + Al , v = βV +

Bl , u ′ = βU +Cl , v ′ = β 2V +Dl . It easily follows that φl (p (u , v )) = p (u ′v ′), whence
t −1

l p (u , v )tl = p (u ′, v ′) in K ∗φl
. Conversely, suppose that t −1

l p (u , v )tl p (u ′, v ′)−1 = 1.
By Britton’s Lemma 4.3 applied to K ∗φl

, we have p (u , v ) ∈< x β
2
, y β , p (Al , Bl )>. Hence,

p (u , v ) = x β
2 j1 y β j2 p (Al , Bl )

j3 x β
2 j4 . . . p (Al , Bl )

jn (1)

for some integers j1, j2, . . . , jn . Using trivial relations and the commutation of x and y ,
the right-hand side of (1) may be written as

p (β 2U1+Al ,βV1+Bl )
j3 ·p (β 2U2+Al ,βV2+Bl )

j6 . . . p (β 2Uk +Al ,βVk +Bl )
jn x β

2a y βb

for some U1, V1,U2, V2, . . .Uk , Vk , a , b . Making x , y and z commute (by abelianizing K )
in this equality, we deduce that a = b = 0. By Lemma 4.4, we then conclude that the
right-hand side of (1) reduces to a single factor p (β 2U + Al ,βV +Bl ) for which u =
β 2U +Al and v =βV +Bl . We thus compute in K ∗φl

that t −1
l p (u , v )tl =φl (p (u , v )) =

p (βU +Cl ,β 2V +Dl ). It then follows from the hypothesis p (u ′, v ′) = t −1
l p (u , v )tl and

Lemma 4.4 that u ′ = βU +Cl et v ′ = β 2V +Cl . In other words, (u , v )
l→ (u ′, v ′). The

case of an r -transformation may be treated the same way.

Denote by KZ the group obtained from K by the successive HNN extensions by the
morphismsφl andφr associated with all the l and r -transformations of Z . Clearly,
the resulting group does not depend on the order of successive extensions. Since a
group embeds in all its extensions, Lemma 4.6 remains valid in KZ . Denote by {tl } and
{tr } the stable generators of all the HNN extensions corresponding to the morphisms
φl andφr .

Lemma 4.7. (u ′, v ′)
∗↔ (u , v ) if and only if p (u ′, v ′) ∈< p (u , v ),{tr },{tl }>⊂ KZ .

PROOF. By repeated applications of Lemma 4.6, if (u ′, v ′)
∗↔ (u , v ) then there exists

w ∈< {tl },{tr } >⊂ KZ such that p (u ′, v ′) = w −1p (u , v )w . In particular, p (u ′, v ′) ∈<
p (u , v ),{tr },{tl } >. Conversely, suppose that p (u ′, v ′) ∈< p (u , v ),{tr },{tl } >. Hence,
p (u ′, v ′)may be written

T0p (u , v ) j1 T1p (u , v ) j2 . . . p (u , v ) jk Tk (2)

for some integers j1, j2, . . . , jk and words T0, T1, . . . , Tk in < {tr },{tl }>. Since the value
p (u ′, v ′) of this product is in K , it follows by induction on the number of HNN exten-
sions from K to KZ and by Britton’s lemma that this product contains a factor of the
form t ±1

s w t ∓1
s , where w is in the domain or codomain ofφs . From (2) we must have

w = p (u , v ) j for some j ∈ { j1, j2, . . . , jk}. Arguing as in the second part of the proof of
Lemma 4.6, we deduce that

t ±1
s w t ∓1

s = t ±1
s p (u , v ) j t ∓1

s = (t
±1
s p (u , v )t ∓1

s )
j = p (u ′′, v ′′) j
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where either (u , v )
s→ (u ′′, v ′′) or (u , v )

s← (u ′′, v ′′) depending on the signs in the ts

exponents. In particular, the fact that p (u , v ) j is in the (co)domain ofφs implies that
the s -transformation (or its inverse) corresponding to ts applies to (u , v ). Substituting
p (u ′′, v ′′) j to t ±1

s p (u , v ) j t ∓1
s in (2) we get a new expression in terms of the Ti ’s, p (u , v )

and p (u ′′, v ′′). Iterating the process we eliminate the ts factors to obtain

p (u ′, v ′) = p (u1, v1)
j1 p (u2, v2)

j2 . . . p (uk , vk )
jk

where (ui , vi )
∗↔ (u , v ) for each i . Lemma 4.4 allows to conclude that the right-hand

side reduces to a single p (ui , vi )with (ui , vi ) = (u ′, v ′), so that (u ′, v ′)
∗↔ (u , v ).

Lemma 4.8. Let (u0, v0) ∈Z2 corresponds to a halting configuration of Z . Then, (u , v )
∗↔

(u0, v0) if and only if (u , v )
∗→ (u0, v0).

PROOF. On the one hand, we cannot have (u , v )
s← (u0, v0) since (u0, v0) is halting.

On the other hand, (u , v )
s← (u ′, v ′)

s ′→ (u ′′, v ′′) implies (u , v ) = (u ′′, v ′′) since Z is
deterministic. We can thus assume that this pattern does not occur in (u , v )

∗↔ (u0, v0).
It follows that (u , v )

∗→ (u0, v0).

PROOF OF THEOREM 2.7. let Z be the Z2-machine corresponding to a universal Tur-
ing machine T . Up to a simple modification, we can assume that T has a unique
halting configuration corresponding to some (u0, v0) for Z . It follows from Lemmas 4.7
and 4.8 that T eventually halts starting from a configuration with Z2 code (u , v ) if
and only if p (u , v ) belongs to the subgroup < p (u0, v0),{tr },{tl } > of KZ . This last
generalized word problem is thus unsolvable by Corollary 1.2.

PROOF OF THEOREM 2.5. Let H =< p (u0, v0),{tr },{tl } >⊂ KZ . Consider the HNN
extension L := KZ ∗I dH

and let k be the stable generator of this extension. By Brit-
ton’s lemma p (u , v )k p (u , v )−1k−1 =L 1 if and only if p (u , v ) ∈ H . Hence, the above
unsolvable generalized word problem reduces to the word problem.

PROOF OF THEOREM 2.8. The unsolvability of the isomorphism problem results from
Theorem 2.9 since being isomorphic to the trivial group is a Markov property. For
completeness we nonetheless provide an independent proof based on the above con-
struction. First note that if all the nontrivial elements of a group have infinite order,
this remains true for the nontrivial elements of any HNN extension of the group. This
can be proved by applying Britton’s lemma to the powers of the normal form of an
element (exercise). In particular, the nontrivial elements of K = 〈x , y , z | [x , y ]〉 have
infinite order, so that this will be true for any further HNN extensions.

Let 〈S |R 〉 be the presentation of L = KZ ∗I dH
naturally obtained by the successive

extensions as in the proof of Theorem 2.5. In particular, S = {x , y , z }∪ {tl }∪ {tr }∪ {k}.
For a word w in S , we consider the group with presentation

L (w ) := 〈S ∪{ks }s∈S |R ∪{k−1
s w ks = s }s∈S 〉

We claim that w represents the identity in L if and only if L (w ) is isomorphic to the free
group over S . Indeed, if w =L 1 then the new relations in L (w ) reduce to 1= s , whence
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L (w ) = 〈{ks }s∈S | −〉. Conversely, if w 6= 1 then w , like the s ’s, has infinite order in L .
It follows that w 7→ s defines an isomorphism of cyclic infinite groups. Hence, L (w )
may be viewed as resulting from a sequence of HNN extensions with stable generators
{ks }s∈S . In particular, L embeds in L (w ), implying that the word problem for L (w ) is
unsolvable. On the other hand, if L (w )was isomorphic to a free group then the word
problem for L (w )would be solvable, a contradiction. Hence, L (w ) is not isomorphic
to a free group, thus proving the claim. It follows that this instance of the isomorphism
problem reduces to an unsolvable word problem.
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