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The purpose of this lecture is to extend the Nash-Kuiper Theorem on C 1 isometric
embeddings of Riemannian surfaces to polyhedral surfaces. These notes are based
on the work of Burago and Zalgaller [BZ95]. As usual, Ed denotes the d -dimensional
Euclidean space.

1 Polyhedral surfaces

Here, the objects of interest are polyhedral surfaces which are compact topological
surfaces endowed with a polyhedral metric. Those can be obtained by considering a
set of Euclidean triangles in the plane, gluing their sides according to a partial oriented
pairing. This pairing should be such that each side appears at most once in the pairs
and two sides in a pair should have the same length. The pair orientation specifies
one of the two isometries between its sides. Note that two sides of a same triangle may
well be glued together. The resulting surface is closed, i.e., without boundary, when
each side appears in one pair, i.e., when the pairing is complete.

Exercise 1.1. Prove that the above construction always results in a topological surface.

Recall that a simplicial triangulation of a surface is a decomposition into triangles1

such that any two (closed) triangles are either disjoint or intersect along a common
vertex or a common edge.

1In general, one call a simplicial triangulation the homeomorphic image of the carrier of an abstract
simplicial complex. A well-known result of Radó [Rad25, DM68] states that every topological surface
has a simplicial triangulation. In these notes we only consider geometric triangulations composed of
Euclidean triangles.

1
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Exercise 1.2. The gluing of triangles may not define a simplicial triangulation of the
resulting surface, for instance when two edges of a same triangle are paired. Assuming
a pairing (each edge belongs to at most one pair) that excludes this case, do you always
get a simplicial triangulation? Show that any gluing of triangles admits a simplicial
subdivision, i.e., that the triangles can be subdivided into a finite union of triangles in
order to get a simplicial triangulation.

The gluing of Euclidean triangles induces an intrinsic metric on the resulting
polyhedral surface: the distance between any two points is the infimum of the lengths
of the paths connecting the two points, where paths are finite concatenations of paths
contained in a single triangle and the length of a path is the sum of the Euclidean
length of these triangle paths.

Exercise 1.3. Prove that the intrinsic metric is indeed a metric.

There is an intrinsic definition of polyhedral surfaces that does not assume any
specific triangulation. Formally, a polyhedral metric on a surface is a metric such
that every point has a neighborhood isometric to a neighborhood of the apex of a
Euclidean cone, where we ask that the isometry sends the considered point to the
apex of the cone. In turn, a (2-dimensional) Euclidean cone is defined by coning a
rectifiable simple (non self-intersecting) curve on the unit sphere inE3 from the origin.
The length of this curve is the total angle of the cone; it determines the geometry of
the cone up to a length preserving map. A point whose conic neighborhood has total
angle different from 2π is called a singular vertex. Note that in any triangulation of a
polyhedral surface by Euclidean triangles the singular vertices must be vertices of the
triangles.

Exercise 1.4. Show that the above definitions based on triangles or on conic neigh-
borhoods are indeed equivalent. See [LP15] for a generalisation of this equivalence to
higher dimensional polyhedral spaces.

Let S be a polyhedral surface. A map f : S →E3 is said piecewise linear (PL) if S
admits a triangulation such that the restriction of f to any triangle is linear, i.e., it
preserves barycentric coordinates. f is piecewise distance preserving if S admits a
triangulation such that the restriction of f to any triangle is distance preserving, i.e.,
| f (x )− f (y )|= dS (x , y ) for any x , y in a same triangle. Here, | · | is the Euclidean norm
and dS is the metric on S . In particular, f must be PL.

2 The PL isometric embedding theorem of Burago and
Zalgaller

A map f : S → E3 is C -Lipschitz if | f (x ) − f (y )| ≤ C dS (x , y ) for all x , y ∈ S . A C -
Lipschitz map is said contracting, or short when C < 1, and nonexpanding when
C = 1.

As a topological surface, a polyhedral surface admits a unique smooth structure
compatible with the conic charts at the non-singular points (the local isometries are
used as coordinate maps). We can thus speak of a C 2-immersion of S . Burago and
Zalgaller [BZ95] proved a PL version of the Nash-Kuiper theorem on C 1 isometric
immersions. We recall that f : X → Y is a (topological) embedding if f : X → f (X ) is a
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homeomorphism, where f (X )⊂ Y is given the topology induced by Y . f is an immer-
sion if it is a local embedding, i.e., every x ∈ X has a neighborhood the restriction to
which f is an embedding. Note that an immersion may have “self-intersections” as
opposed to an embedding. A piecewise distance preserving embedding is also called
a PL isometric embedding.

Theorem 2.1 (Burago and Zalgaller, 1996). Let S be a polyhedral surface. Every short C 2-
immersion of S inE3 can be approximated by a piecewise distance preserving immersion
in E3. The same is true, replacing immersion by embedding.

Here, the approximation by a piecewise distance preserving map means that for
any ϵ > 0 there is such a map whose C 0 distance is less than ϵ. We recall that the C 0

distance of two maps f , g : S →E3 is sups∈S | f (s )− g (s )|.
Remark 2.2. This theorem implies that every polyhedral surface has a piecewise dis-
tance preserving immersion in 3-space. In fact, every orientable surface and every
surface with non-empty boundary is isometric to a PL surface embedded inE3! Indeed,
it is well-known that every (compact) closed non-orientable surface can be smoothly
immersed in 3-space while all other surfaces embeds smoothly in 3-space. One can
compose such an immersion or embedding with a homothety whose ratio is small
enough to get a short map. Applying the above theorem to this map allows to conclude.

Remark 2.3. The approximation result in the theorem tells that we can approximately
prescribe the shape of the immersion as long as it is short. For instance, we can find a
PL isometric embedding of a unit cube as close as desired to a cube of half size. An
even more surprising consequence is that the unit cube – and in fact any polyhedron
in E3 – has another PL isometric embedding enclosing a larger volume! See [Pak06] for
the general case. The case of a cube has actually a simple solution [Pak08] independent
of the theorem of Burago and Zalgaller.

3 The basic case

Before dealing with general polyhedral surfaces we consider the simplest case of a
surface with boundary reduced to a single triangle T and embedded intoE3 by a linear
short map T → t . In other words, we ask that

• (1) the sides of the image triangle t are shorter than the corresponding ones in
T .

We also assume that

• (2) T and t are acute triangles, meaning that the angle at each vertex is less than
the right angle. Equivalently, the circumcenter of each triangle is interior to the
triangle.

• (3) The distance of the circumcenter Ω to each side of T is larger than the cor-
responding distance in t , i.e., than the distance of its circumcenter ω to the
corresponding side.
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Consider one of the two right prisms with base t in E3. Let us call it the prism above
t . Let PQ be a side of T and let p q be the corresponding side in t . Embed PQ
isometrically as an equilateral broken line p mq inside the lateral face of the prism
above p q and embed the two other sides of T in a similar manner in the corresponding
lateral faces. See the figure below.
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Lemma 3.1. The above embedding of the sides of T extends to a PL isometric embedding
of T lying inside the prism above t . Moreover, refining this isometric embedding we
can enforce that its C 0 distance to the linear embedding T → t is arbitrarily small.

PROOF. Letω′ the point vertically aboveω such that |pω′|= |PΩ|. Refer to Figure 2
for an illustration. Note thatω′ is well-defined since by the assumptions (1) and (2)
the circumradius |PΩ| of T is larger than the circumradius |pω| of t . Subdivide T into
three subtriangles by cutting along the circumradii joining Ω to the vertices of T .
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M

We show below how to fold the subtriangle [PQΩ] in the prism above t so that its
boundary fits the broken line p mqω′p . Similar constructions apply to the other two
subtriangles so that putting together the three constructions we obtain the desired
embedding of T . The second part of the lemma will follow after subdividing both
T and t uniformly into sufficiently small triangles as on Figure 1. We can indeed
apply the same three constructions to each pair of corresponding small triangles. The
deviation of the whole construction from the base triangle t can be made arbitrarily
small by using finer and finer subdivisions.

Let M be the midpoint of PQ . Fold [PQΩ] along its height MΩ so as to apply
its side PQ along p mq . The folding segment MΩ now coincides with a horizontal
segment mω′′. See Figure 2.
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Figure 1: Uniform subdivision of a triangle. The vertices of the subdivision have
barycentric coordinates (i/n , j /n , k/n ) for i , j , k ∈N and i + j +k = n for some fixed
n .
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Figure 2: a: fold of [PQΩ] along its height MΩ and the two planes Π1 and Π2. b: the
plane Π1. c: the plane Π2 and reflection in Π1. d: reflection in Π2.

By the above assumption (3) the segment mω′′ cuts ωω′ at some point c . Let
Π1 and Π2 be two planes in the sheaf generated by the line p q so that they cut m c
in the order m ,Π2 ∩m c ,Π1 ∩m c , c . We further fold [PQΩ] by reflecting across Π1

its part lying below Π1 (i.e., in the halfspace bounded by Π1 and containingω′′). We
then reflect along Π2 the part above Π2 and continue this way, alternating between
reflections acrossΠ1 andΠ2. By a suitable choice ofΠ1 andΠ2 we can ensure that after
a finite and even number of reflectionsω′′ is sent toω′. The resulting folding of [PQΩ]
defines an isometric embedding bounded by p mqω′p as desired.

Exercise 3.2. Propose an explicit folding of [PQΩ] as in the above proof, possibly
varying the reflection planes Π1 and Π2. Can you estimate the required number of
reflections in your algorithm as a function of some appropriate geometric quantities?

This construction allows for some flexibility. The prism wall above p q may be slightly
tilted around p q as long as mω′′ crossesωω′. The same is true for the other two walls.
The maximum angle of rotation depends on the maximum length ratio between the
edges of T and the corresponding edges of t , and on the minimum and maximum
angles at the vertices of T . It also depends on the degree of similarity between T and
t , as the above condition (3) is trivially satisfied when T and t are similar. Playing with
those parameters one can get uniform conditions for applying this construction to a
collection of pairs (Ti , ti ).
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4 Proof of the Burago and Zalgaller theorem

We shall assume once for all that the surface S in Theorem 2.1 is orientable and without
boundary. The non-orientable or boundary cases need non-trivial special treatments
and we refer to the original paper [BZ95] for the details. Denote by f : S → E3 the
short C 2 map in Theorem 2.1. The strategy for the proof is the following. In view of
the construction in the previous section, suppose that S is triangulated so that each
triangle is acute. By applying a uniform subdivision as on Figure 1 we can assume that
the largest edge length of this triangulation, call it T , is as small as desired. Consider
the PL approximation F of f with respect to T mapping a triangle T = [PQ R ] of T
to the triangle F (T ) := [ f (P ) f (Q ) f (R )] in E3.

• As f is short, if T is small enough then the pair (T , F (T )) satisfies Condition (1)
in Section 3.

• Since f is C 2 and S is compact, adjacent triangles are mapped to triangles having
a dihedral angle uniformly close to π.

Suppose in addition that

• every triangle of T is acute.

• S has no singular vertex, so that its polyhedral metric, say µ, is flat and C∞.

• f is almost conformal, meaning that µ and the pullback metric f ∗〈·, ·〉E3 are
almost proportional at every point. In other words, for any point s ∈ S and every
tangent vectors u , v at s we haveµ(u , v )≈λ2

s 〈d fs .u , d fs .v 〉E3 for some conformal
factor λs > 0 independent of u , v .

Then every small enough triangle T of T is approximately similar to its linear image
F (T ). We are thus in the uniform conditions evoked at the end of Section 3 and we
can apply the tilted isometric embedding construction to each triangle T above F (T )
as described there. Since S is orientable we can orient all its triangles consistently
so that the tilted embedding of an edge coincides for its two incident triangles. The
individual triangle embeddings thus fit together to form a PL isometric immersion.
This would conclude the proof of Theorem 2.1 noting that when f is an embedding, a
sufficiently fine subdivision of an acute triangulation of S ensures that the embeddings
of the individual triangles do not intersect, leading to a PL embedding as desired. The
difficulty of the proof of Theorem 2.1 thus resides in removing the above assumptions:

• proving that any polyhedral surface has an acute triangulation,

• dealing with singular vertices on a polyhedral surface, and

• replacing f by an almost conformal map.

Exercise 4.1. Prove by simple counting arguments, without the help of the Gauss–Bonnet
theorem, that a closed orientable polyhedral surface without singular vertices is a flat
torus.
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The fact that any polyhedral surface has an acute triangulation is of independent
interest and is the subject of the next section. Concerning the conformality of f , we
can invoke the Nash-Kuiper Theorem, or more precisely a simpler construction of
Kuiper [Kui55]. We refer the reader to Kuiper’s original paper (eq. (5.3)) or to the course
on the h-principle in the Master program for a proof of the next result.

Theorem 4.2 (Kuiper’55). Any short C 1 immersion (embedding) f : (S ,µ)→ E3 of a
surface S, possibly with boundary, endowed with a C 1 metric µ can be approximated
by a C∞ almost isometric immersion (embedding) g : S →E3, i.e., satisfying (1− ϵ)µ<
g ∗〈·, ·〉E3 <µwith ϵ arbitrarily small. Moreover, if f is isometric on the boundary of S
(and short inside S), we can enforce g = f on the boundary.

Thanks to this lemma we can approximate f with an almost isometric immersion2

g which is a fortiori almost conformal. Moreover, replacingµ byαµ, withα< 1, so that
f is still short for αµwe ensure that g is short for µ. It remains to deal with singular
vertices. The singular vertices with total angle smaller or larger than 2π are dealt with
separately. We first introduce certain maps between cones.

The standard conformal map. Let Cϕ denote the Euclidean cone with total angle ϕ.
Fixing a generating line ℓ on Cϕ we get polar coordinates (r,θ ) for a point at distance
r > 0 from the apex, such that the generating line through the point makes an angle
θ ∈ [0,ϕ)with ℓ. The standard conformal map fϕ,ψ,λ : Cϕ→Cψ sends apex to apex and

the point with polar coordinates (r,θ ) to the point with polar coordinates (λr
ψ
ϕ , ψϕθ ),

where λ > 0 is a fixed parameter. This map is conformal (apart from the apex) with

conformal factor λψϕ r
ψ
ϕ −1.

Exercise 4.3. Prove that fϕ,ψ,λ is indeed conformal with the claimed conformal factor.

Solution:
In local charts, the map is just f : z 7→λz

ψ
ϕ which is holomorphic, hence conformal with factor

| f ′|=λψϕ r
ψ
ϕ −1.

Other longer proof: The 1-forms dx , dy are related to the 1-forms dr, dθ by differentiating
x = r cosθ and y = r sinθ . Those forms are dual to the bases (∂ x ,∂ y ) and (∂ r,∂ θ ) respectively.
We have the metric at the source: g := dx 2+dy 2 = (c dr −r s dθ )2+(s dr −r c dθ )2 = dr 2+r 2dθ 2

where c = cosθ and s = sinθ . At the target we have the metric: G := dX 2+dY 2 = dR 2+R 2dΘ2.
For a general metric m , we have

m =m (∂ r,∂ r )dr 2+m (∂ θ ,∂ θ )dθ 2+2m (∂ r,∂ θ )dr dθ

Hence, writing f = (R ,Θ) (with R =λr
ψ
ϕ and Θ = ψϕ θ )) for fϕ,ψ,λ,

f ∗M =G (d f .∂ r, d f .∂ r )dr 2+G (d f .∂ θ , d f .∂ θ )dθ 2+G (d f .∂ r, d f .∂ θ )dr dθ

On the other hand we compute d f .∂ r = ∂ R
∂ r ∂ R + ∂ Θ∂ r ∂ Θ = λ

ψ
ϕ r

ψ
ϕ −1∂ R and d f .∂ θ = ∂ R

∂ θ ∂ R +
∂ Θ
∂ θ ∂ Θ =

ψ
ϕ ∂ Θ. It ensues that

f ∗M = (λ
ψ

ϕ
r
ψ
ϕ −1)2dr 2+ (λr

ψ
ϕ )2(

ψ

ϕ
)2dθ 2 = ((λ

ψ

ϕ
r
ψ
ϕ −1)2g

2The C 1 (exact) isometric immersion in the Nash-Kuiper Theorem is obtained as the limit of a
converging sequence of such approximations.
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as desired.

Dealing with singular vertices of total angle smaller than 2π. Let v ∈ S be a singular
vertex with total angle ϕ < 2π. Let Bv,ρ be the (conic) disk with center v and radius
ρ in S . We modify f in Bv,ρ for some small ρ so that its restriction to Bv,ρ′ , for some
ρ′ <ρ, coincides with the standard conformal map fϕ,2π,λ where the image cone C2π

is identified with the plane tangent to f (v ) with “apex” f (v ) and λ is chosen small
enough so that fϕ,2π,λ is contracting in Bv,ρ′ . We further extend fϕ,2π,λ inside Bv,ρ so
that the overall modification of f remains short and C 2.

Dealing with singular vertices of total angle larger than 2π. Let v ∈ S be a singular
vertex with total angle ϕ > 2π. We modify f in Bv,ρ for some small ρ so that for some
ρ′ <ρ:

1. its restriction to Bv,ρ′/2 expressed in polar coordinates is the map (r,θ )→ (r, 2π
ϕ θ )

where we again identify the flat cone C2π with the plane tangent to f (v ). This map
is isometric in the radial direction and uniformly contracting in the orthogonal
direction.

2. its restriction to the annulus Bv,ρ′ \Bv,ρ′/2 is the standard conformal map fϕ,2π,λ

with λ= (ρ′/2)1−
2π
ϕ . This choice of λ implies that the conformal factor of fϕ,2π,λ

is bounded by 2π
ϕ < 1 outside Bv,ρ′/2.

3. its restriction to Bv,ρ \Bv,ρ′ is smooth, short, and connects to f at the boundary
of Bv,ρ in a C 2 manner.

Note that the modified f is not short on the disk Bv,ρ′/2 and is only C 1 at its boundary.
We surround v in S with a regular k -gone Nv (k ) inscribed in a disk of radius ρ′/2,
where k is large and may be fixed later. We triangulate Nv (k ) by coning its boundary
from its center v . We next slightly enlarge Nv (k ) to a neighborhood N ′v =N ′v (k ) to form
a cogged disk obtained by attaching equilateral triangles to the k sides of Nv (k ). The
reason for this enlargement is to allow for the uniform subdivision of the complement
of N ′v . Indeed, this complement needs to be triangulated and possibly subdivided
uniformly, say ℓ times. This subdivision can easily be extended to N ′v by changing
Nv (k ) for Nv (ℓk ), as shown on the figure below.
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Replacing Nv (5) by Nv (15) allows to extend the uniform subdivision of the boundary of the
cogged disk N ′v (5).

Putting the pieces together. In the above local modifications of f , the radii ρ are
chosen small enough so that the disks Bv,ρ are pairwise disjoint and the modified
map, say f1, remains close to f . Let V+, V− be the set of singular vertices of S with total
angle respectively smaller and larger than 2π. Set V = V+ ∪V− for the set of singular
vertices of S . We shall now invoke Theorem 4.2 to replace f1 on S \∪v∈V Bv,ρ′/2 by a close
immersion f2 which is both almost conformal and short with respect to the polyhedral
metricµ. To this end, we first consider outside the disks Bv,ρ′/2 a contracting scalingαµ
ofµ,α< 1 so that f1 is still short forαµ. We next consider the metricµ′ on S \∪v∈V Bv,ρ′/2

defined by

µ′ =

¨

αµ outside the disks Bv,ρ′

ϖ f ∗1 〈·, ·〉E3 + (1−ϖ)αµ on ∪v∈V Bv,ρ′ \Bv,ρ′/2

whereϖ is a smooth plateau function interpolating between 1 on the boundary of
Bv,ρ′/2 and 0 on the boundary of Bv,ρ′ . Note that f1 is already conformal with respect
to µ on Bv,ρ′ \ Bv,ρ′/2 so that µ and µ′ are conformal. Note also that f1 is short with
respect toαµ on Bv,ρ′\Bv,ρ′/2 so that f1 remains short with respect toµ′ in the interior of
S \∪v∈V Bv,ρ′/2 while being isometric on its boundary. We can now apply Theorem 4.2 to
µ′ and f1 on S \∪v∈V Bv,ρ′/2 to obtain an almost isometric immersion f2 approximating
f1. In other words, f ∗2 〈·, ·〉E3 ≈ µ′ and f2 ≈ f1. Moreover f2 and f1 coincide on the
boundary of Bv,ρ′/2. We extend f2 to S by setting f2 = f1 on the disks Bv,ρ′/2. The map f2

is C 2, short and almost conformal with respect to µ except on ∪v∈V−Bv,ρ′/2.
Next, we compute an acute triangulationT of S \∪v∈V−N

′
v as described in Section 5

so that T together with the triangulations of the N ′v define an acute triangulation of S .
The triangles in T being in finite number admit a smaller and a larger angle. As noted
at the end of Section 3 we can find uniform conditions on the degree of similarity
and on the contraction factor that allow to apply the basic construction of Section 3.
Recall that around each v ∈V+ the modified map f2 is a standard conformal map. In
particular its conformal factor tends to zero at v . Moreover, the default of conformality
of f2 outside the Bv,ρ′/2 can be quantified. Hence, we can subdivide T uniformly to
get a sufficiently fine triangulation for which the PL approximation of f2 with respect
to T sends

• adjacent triangles to almost coplanar triangles, and

• each triangle in S \ ∪v∈V−N
′

v to a triangle that is either sufficiently similar or
sufficiently smaller so that the basic construction of Section 3 can be applied.

It remains to extend this subdivision to the neighborhoods N ′v as described above. Let
T ′ be the resulting triangulation. We finally apply the basic construction of Section 3
to each triangle of T ′ except those in the neighborhoods of the form Nv (ℓk )⊂N ′v , for
v ∈V−. In those neighborhoods we use a simpler construction. The ℓk long isosceles
triangles inside each Nv (ℓk ) are further split along their longest median and linearly
embedded into a radially crimped surface above the plane tangent to f (v ) as shown
on the figure below.
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Beware that the left disk is not flat at its center!

If ℓk is large enough the boundary of Nv (ℓk ) is embedded almost perpendicularly to
the tangent plane at f (v ) and can be glued with the rest of the construction.

We end this section with a picture of a PL isometric embedding of the square flat
torus approximating a short Hopf torus [Pin85]. The basic construction of Section 3
has been applied to each triangle of a PL approximation (Figure 5, left) of this Hopf
(conformal) torus to obtain the PL isometric embedding of Figure 5, right.

Figure 5: Left, a short PL embedding of the square fat torus. Right, The resulting
PL isometric embedding of the square flat torus computed by Florent Tallerie. The
triangulation is composed of 170,040 triangles.

5 Existence of acute triangulations

An acute triangulation of a polyhedral surface S is a simplicial triangulation such that
every triangle is flat and acute in S . In particular, if S is already triangulated it might be
desirable to subdivide this triangulation into an acute one. The existence of such acute
triangulations and refinements has a long history, starting with Burago and Zalgaller
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in 1960. See [Zam13] for a comprehensive account on the subject. The existence
proof of Burago and Zalgaller (only available in Russian) was recently simplified by
Saraf [Sar09] and by Maheara [Mae11]. Saraf constructs a non-obtuse triangulation
where the angles within the triangles are at most π/2. A non-obtuse triangulation may
thus contain right angle triangles.

Exercise 5.1. Check that a triangle can always be subdivided into at most two non-
obtuse triangles and prove that it can always be subdivided into at most 7 acute
triangles.

Theorem 5.2 (Saraf’09, Maheara’11). Every triangulation T of a polyhedral surface
can be subdivided into a non-obtuse triangulation. Moreover, we can impose that the
triangles of the subdivision with at least one vertex which is a vertex of T or interior to
an edge of T are acute.

PROOF (SKETCH). Exercise 5.1 provides a seemingly short proof by subdividing each
triangle into 7 acute triangles. However, the subdivisions of an edge induced by the
subdivision of the two adjacent triangles have no reason to agree so that the resulting
subdivision might not be simplicial. We thus need a more clever construction.

Let T be a triangulation of a polyhedral surface S . The main argument for the
construction of an acute triangulation is to first cover the edges of T with a set of
non-overlapping disks centered along the edges. Then, inside each triangle t , the
disks covering its edges are completed into a packing, i.e. into a set of touching disks
with disjoint interiors. Connecting the centers of touching disks with line segments
we obtain a contact graph that induces a subdivision of t into polygons. See Figure 6.
The packing can be chosen so that every polygon has at most four sides. Moreover,
it is possible to subdivide such polygons into non-obtuse triangles subdividing each
side in two by introducing the tangency point of the disks centered at its endpoints. In
particular, the edges of t will be subdivided exactly at the center and contact points
of the covering disks, thus matching the subdivision induced by the other adjacent
triangle (for a boundary edge there is no matching to check). This provides the required
non-obtuse triangulation of S as in the first part of the lemma.

In details, we let θ be the smallest angle in the triangles of T , and we let h be the
shortest altitude of any triangle of T . Put r = h

9 sin θ
2 . Consider an edge e of length ℓ

in T . We place two disks of radius R := h/3 centered at the endpoints of e and cover
the remaining middle segment with ke := ⌈(ℓ/2−R )/r ⌉ equally spaced disks of radius
re := (ℓ/2−R )/ke . The disks placed at the vertices are said of vertex type, and the other
disks are said of edge type. See Figure 6. We easily check that 3r /5≤ re ≤ r . We cover
similarly all the edges of T . It is easily checked that the disks of type vertex and edge
have pairwise disjoint interior. Consider a triangle t . The disks covering its edges
form a circular row of packed disks. We partially extend this packing with a second
row composed of three types of disks.

1. for every pair of touching edge-disks we place a disk of the same radius tangent
to the two edge-disks.

2. for every pair of touching disks, one of which a vertex-disk and the other one
an edge-disk, we place a disk tangent to both disks in the pair and to a disk of
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Figure 6: Upper left: a packing of disks covering the edges. Upper right: the corre-
sponding contact graph. Lower middle: the vertex-disks (dark blue), the edge-disks
(red), and the three types of disks in the circular row: 1 (green), 2 (light blue) and 3
(orange).

type 1. The above choice of R and r is such that the two first types of disks now
form three disjoint sequences of touching disks – one per edge of t .

3. we finally pack disks of radius at most r tangent to the vertex-disks in order to
connect these three sequences into a single circular sequence of tangent disk.
See Figure 6.

The reason for this second row of disks is to enforce that the faces of the contact graph
incident to the edges of t are triangles. We now extend inside t the packing formed by
this row and the disks covering the edges of t .

Claim 1. The second row of disks can be extended towards its interior to form a packing
whose contact graph has faces (excluding the exterior one) with at most four sides.

The proof, due to Bern et al. [BMR95, lem. 1] is by induction on the number of sides
of a face. Initially the contact graph has a single face corresponding to the second row
of disks. Consider the medial axis of the collection of disksD defining a face. This is the
set of centers of all inclusion-wise maximal disks contained in the piecewise circular
polygon bounding D. It is a finite connected graph comprising arcs of hyperbolas
possibly degenerated into line segments3 as illustrated on figure 7.
For two disks Bc ,r , Bc ′,r ′ their medial axis is the set of x s.t. |c x | − r = |c ′x | − r ′ or equivalently,
|c x | − |c ′x |= r − r ′ which defines an hyperbola.
The graph has one leaf vertex per contact point of touching disks inD. Every vertex

3This medial axis is in fact part of the 1-skeleton of the Apollonius diagram of D, also called the
additively weighted Voronoi diagram.
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Figure 7: The medial axis of a circular sequence of 5 disks. Adding the middle disk
(red) splits the face of the contact graph into smaller faces.

of the graph with degree d is the center of a maximal disk tangent do d disks in D.
If |D| > 4, either the graph has a vertex of degree at least 4, or it contains vertices of
degree 3 only and one of those is adjacent to two non-leaf vertices. In both cases
adding the maximal disk centered at this vertex splits the contact graph into polygons
of size less than |D|. This ends the proof of the claim.

We now have a packing including the vertex and edge-disks, the above second
row of disks and its extension. By construction, the faces of its contact graph incident
to the edges of t are triangles and thanks to claim 1 we can extend the packing so
that the remaining faces have at most four sides. It remains to prove that each of
those faces, triangle or quadrilateral, can be subdivided into non-obtuse triangles so
that the subdivisions agree on the face boundaries. More specifically, we show that a
contact graph reduced to a triangle or a quadrilateral has a non-obtuse triangulation
where the contact points of the disks defining the graph are the only vertices inserted
along its edges (but the triangulation may contain other interior vertices). For the
quadrilateral case one can obtain a triangulation into at most 56 non-obtuse triangles.
The construction is rather tedious and described in [BMR95, lem. 4-7]. For the triangle
case Maheara [Mae11] gives a subdivision into 10 acute triangles as shown below.

The fact that the faces of the contact graph incident to the edges of t are triangles thus
implies that they are subdivided into acute triangles, whence the second part of the
lemma.
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Maheara is able to bound the size of the non-obtuse triangulation by 3952 ℓma x n
hθ where

ℓma x is the maximum length of an edge of T , n its number of triangles, and h ,θ are
defined as in the proof.

Corollary 5.3 (Maheara’11). Every triangulation of a polyhedral surface can be subdi-
vided into an acute triangulation.

PROOF. Let T be a triangulation of a polyhedral surface S . From the preceding the-
orem there exists a subdivision T ′ into non-obtuse triangles such that the subdivision
triangles incident to an edge of T are acute. We subdivide uniformly each triangle in
T ′ by splitting every edge at its midpoint, connecting the three midpoints in each face.
Each triangle in T ′ is thus subdivided into 4 similar triangles so that T ′ satisfies the
properties in Theorem 5.2. Then, inside every right triangle of T ′ we flip the interior
subdividing edge parallel to its hypotenuse.

This replaces two right subtriangles by two other congruent right subtriangles. Let T ′′
be the resulting triangulation. We also denote byM the set of midpoints introduced
in T ′ (or equivalently in T ′′) and by V ′′ the set of vertices of T ′′.

The edge flipping operation implies that a vertex standing at the right corner of
some right triangle must belong toM . Remark that no such vertex is adjacent to a
vertex of the original edges of T since all their incident triangles are acute. Consider
a vertex v ∈ V ′′ \M . In particular, all its incident angles are acute. If v is incident
to some right triangle replace the subdivision inside its star as described on the next
figure.

v

If the central “wheel” replacing v is small enough all the triangles in the new star
subdivision will be acute. Since the vertices in V ′′\M are pairwise non-adjacent, their
open stars are pairwise non-intersecting and we can perform a similar re-triangulation
in every star independently. Note that these local modifications do not affect the edges
of T ′′ subdividing the original edges of T by the above remark.
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6 Equidimensional piecewise distance preserving maps

For a polyhedral surface S , recall that f : S →Ed is piecewise distance preserving if S
admits a triangulation such that the restriction of f to any triangle is isometric. Theo-
rem 2.1 of Burago and Zalgaller asserts the existence of piecewise distance preserving
map when d = 3. Surprisingly, the result remains true for d = 2. I partly follow the
notes of Petrunin and Yashinski [PY16].

Theorem 6.1 (Zalgaller). Every polyhedral surface S admits a piecewise distance pre-
serving map into E2.

PROOF. The proof is actually very simple once we know the existence of acute
triangulations. By Corollary 5.3 we may assume that S comes equipped with an acute
triangulation T . Let V0 be the set of vertices of T . Subdivide each triangle t of T into
12 subtriangles as follows. In a first step split every edge at its midpoint and replace t
by 6 triangles, starring its boundary at the circumcenter of t . Note that t being acute
contains its circumcenter in its interior. Let V1 be the set of vertices introduced in this
step, comprising the edge midpoints and triangle circumcenters. Finally split each
subtriangle along the angle bisector incident to its vertex in V0, splitting the opposite
edge accordingly. Denote by V2 the set of vertices thus introduced and let T2 be the
triangulation finally obtained. Hence, |T2|= 12|T |.

Left, first subdivision. Right, each subtriangle is further split along a bisector resulting in a
triangulation T2. Every triangle of T2 has one (black) vertex in V0, one (white) vertex in V1 and
one (grey) vertex in V2.

We now define f : S → R2, sending T2 linearly into R2 as follows. Let [v0, v1, v2] ∈ T2

with vi ∈ Vi , i = 0,1,2. Set f (v0) = (0,0) ∈R2 and f (v1) = f (v0) + |v0v1|e1, where (e1, e2)
is the canonical basis of R2. Define f (v2) in the upper halfplane {x2 > 0} so that
[ f (v0), f (v1), f (v2)] is isometric to [v0, v1, v2]. It is a simple matter to check that the
image of a vertex is independent of the incident triangle chosen to define its image.
The resulting linear extension f is clearly piecewise distance preserving. Note that in
the above figure the restriction of f to green triangles is orientation preserving while
its restriction to the white triangles is orientation reversing (or vice-versa).

The preceding theorem has a stronger form which is the analog of the theorem of
Burago and Zalgaller in dimension 2.
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Theorem 6.2 (Akopyan, 2007). Let S be a polyhedral surface. Every nonexpanding PL
map S →E2 can be approximated by a piecewise distance preserving map, where the
C 0 distance to the apprimation can be chosen arbitrarily small.

The proof relies on an extension theorem of independent interest.

Theorem 6.3 (Brehm, 1981). Let {p1, . . . , pn} be a set of n points contained in a convex
polygon P in the plane. Then, any nonexpanding map {p1, . . . , pn} → E2 extends to a
piecewise distance preserving map f : P →E2.

PROOF. Denote by qi the image of pi by the nonexpanding map. The proof is by
induction on the number n of points. The base case n = 1 is trivially solved by taking
for f the plane translation of vector p1q1. For n > 1 the induction hypothesis provides
a piecewise distance preserving map h : P →E2 such that h (pi ) = qi for i = 2, . . . , n . We
may assume h (p1) ̸= q1 for otherwise we can set f = h . Consider the set

Ω= {x ∈ P | |p1 x |< |q1h (x )|}

Note that p1 ∈Ω.

Claim. Ω is the interior (relative to P ) of a star-shaped polygon with respect to p1.

PROOF OF THE CLAIM. • Ω is star-shaped: if x ∈Ω then for every y on the segment
[p1, x ]we have

|p1 y |= |p1 x | − |x y |< |q1h (x )| − |h (x )h (y )| ≤ |q1h (y )|

Hence y ∈ Ω as desired. Here, we used the simple fact that the distance preserving
map h is nonexpanding.
• Ω is the interior of a polygon: consider a triangulation T of P such that h is an

isometry on each triangle t of T . Denote by ι the extension of the isometry h t to
the plane. Then, the condition |p1 x | < |q1h (x )| can be written |p1 x | < |ι−1(q1)x | on
t . Hence, Ω∩ t is the intersection of t with the open halfplane containing p1 and
delimited by the bisector of the segment [p1, ι−1(q1)]. It follows that Ω=∪t ∈T Ω∩ t has
indeed a polygonal shape.

Intersecting the boundary ∂ Ω of Ωwith T , we may assume that h is an isometry on
each segment of ∂ Ω. Let E be the set of segments of ∂ Ω that are not contained in ∂ P .
For each segment e ∈ E we have by continuity of h that |p1 x |= |q1h (x )| for x ∈ e . We
now define f by parts as follows.

• We set f = h on P \Ω.

• For e ∈ E we define f on the triangle p1 ∗ e (the cone with apex p1 over e ) as the
isometry sending p1 to q1 and e to h (e ).
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• The remaining part Ω \∪e∈E p1 ∗ e is composed of disjoint open convex polygons
with closure of the form p1 ∗C where C is a subpath of ∂ P . Denote by a and b
the endpoints of C . The partial definition of f already maps [p1, a ] and [p1, b ]
to [q1, h (a )] and [q1, h (b )] respectively. Recalling that |h (a )h (b )| ≤ |a b |, it is an
exercise to extend f inside p1 ∗C in a piecewise distance preserving manner
(hint: fold the polygon a p1b C as a fan)

P

Ω

C

p1

pi qi

q1

e h (e )

a

b

h (b )

h (a )E

E

h

The map f thus defined is clearly continuous and piecewise distance preserving.
Moreover, we have f (p1) = q1 and pi ∈ P \Ω for i ≥ 2, so that f (pi ) = h (pi ) = qi and f is
indeed an extension of pi 7→ qi .

PROOF OF THEOREM 6.2. We first suppose that h : S → R2 is a short PL map with
Lipschitz constant C < 1. Let T be a triangulation such that h is linear on each
triangle of T . Denote by f the piecewise distance preserving map approximating h
that we are looking for. We define f on the edges of T . If e is such an edge we let f (e )
result from a corrugation process applied to h (e ): we simply replace the segment h (e )
by a polygonal curve with the same extremities and the same length as e but with a
saw-tooth profile. The larger is the number of teeth the closer is f to h along e .

Denote byT 1 the 1-skeleton ofT , which is the union of its edges. We would like f to be
nonexpanding on T 1. This is true for the restriction of f to each edge individually but
might become false in general. To overcome this problem we first “reparametrize” T 1

by contracting a small neighborhood of each vertex inT 1 and by expanding linearly the
remaining part of each edge to the whole edge: If [p , q ] is an edge, this parametrization
smashes small subsegments [p , p ′] and [q ′, q ] of a fixed lengthδ to p and q respectively
and stretches [p ′, q ′] to [p , q ]. Denote by ϕ :T 1→T 1 the resulting parametrization.
If δ is small enough, h ◦ϕ remains short, say with Lipschitz constant C ′ < 1. We now
apply the above corrugation process to h ◦ϕ using the same corrugations for all the
subsegments of length δ that are incident (hence contracted) to a same vertex. Hence,
if [p , p ′] and [p , q ′] are two such segments, their image by f should coincide. It is
now easy to check that choosing the corrugations so that f and h ′ := h ◦ϕ are at C 0
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distance (1−C ′)δ/2, we have | f (x ) f (y )| ≤ dS (x , y ) for all x , y ∈T 1: either dS (x , y )>δ
and then

| f (x ) f (y )| ≤ | f (x )h ′(x )|+|h ′(x )h ′(y )|+|h ′(y ) f (y )| ≤ |h ′(x )h ′(y )|+(1−C ′)δ≤C ′dS (x , y ),

or dS (x , y )≤δ so that x , y are close to a same vertex v and belong to segments smashed
to v by ϕ. Considering y ′ on the same segment as x and at the same distance to v as
y we conclude that | f (x ) f (y )|= | f (x ) f (y ′)| ≤ dS (x , y ′) = dS (x , y ) by construction.

When h is just nonexpanding rather than short, we replace h by C h for some
C < 1 arbitrarily close to 1 to obtain an approximation of C h on T 1, which is also an
approximation of h on T 1.

It remains to invoke the extension theorem 6.3 for each triangle t of T . Con-
sider a subdivision of ∂ t such that f is linear on each segment of this subdivision.
Let p1, . . . , pn be the vertices of the subdivision. The extension theorem applied to
{p1, . . . , pn}, the restriction of f to the pi ’s and P := t provides the desired piecewise
distance preserving map. Moreover, if the triangles of T are small enough, applying a
uniform subdivision if necessary, then f and h will be C 0 close on the whole surface
S .
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