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Historically, the notion of manifold, say at the time of Gauss (1777-1855), was
thought extrinsically as a subspace of some Euclidean space. Starting with Riemann
(1854) this notion evolved toward the more abstract intrinsic definition of a space
which is locally Euclidean. It results from the famous Whitney embedding theorems
that the intrinsic and extrinsic point of view are indeed the same. The weak Whitney
embedding theorem (1936) claims that every n-manifold embeds inR2n+1, while the
strong version reduces the dimension of the target space from 2n +1 to 2n . However,
those theorems do not say anything for embedding more complicated spaces. In this
lecture we look at this question from the algorithmic point of view. For this, we need
to describe in a combinatorial way the spaces we are interested in.

1 Topological prerequisites

1.1 Complexes

A natural way to describe spaces is to express them as assembly of elementary pieces.
In practice, the pieces are cells, i.e. subspaces homeomorphic to balls of various
dimensions. Using cells in place of more complicated building blocks greatly simplifies
the computation of topological invariants such as homotopy or homology groups.
An assembly of cells is called a complex. Depending on the shape of the cell, we
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1.1 Complexes 2

obtain different categories of complexes with suitable notions of morphisms. We thus
have among others, simplicial, cubic, polyhedral, delta, or cellular (CW) complexes.
The most general complexes are the cellular ones. Their definition is not entirely
combinatorial as it relies on the notion of attaching maps which are continuous maps
sending the boundary of a cell to cells of lower dimensions. It is not the purpose of
these notes to give a formal definition of all the kinds of complexes. We will essentially
stick to finite simplicial complexes and finite one dimensional cellular complexes.

Graphs: One dimensional cellular complexes are also called graphs. Their zero and
one dimensional cells are called vertices and edges, respectively. A graph is thus a
set of vertices connected by edges. Its topological type, up to homeomorphism, is
described combinatorially by two sets, one for the vertices and one for the edges, and a
map associating each edge to a pair of possibly identical vertices, called its endpoints.
An edge whose endpoints coincide is a loop edge. If distinct edges share the same
endpoints, they form a multiple edge. A graph without loop and multiple edge is
said simple. A simple graph is thus another name for a one dimensional simplicial
complex.

Simplicial complexes: Their cells are simplices. A k dimensional simplex, or k -
simplex, is the convex hull of k +1 affinely independent points p0, . . . , pk in some Rd

and is denoted by [p0, . . . , pk ]. The empty set is also considered as a simplex1 with
dimension −1. The convex hull of any subset of the pi ’s is a face of the k -simplex
and is itself a simplex of dimension at most k . A geometric simplicial complex K is a
collection of simplices in someRd such that (1) any face of a simplex in K is in K , (2)
the intersection of any two simplices in K is a common face of the two simplices. The
dimension of K is the maximum dimension of its simplices. The union of the simplices
of K is denoted by |K | and indifferently called the underlying set, the polyhedron,
the carrier, or the total space of K . Any simplex σ ∈ K (formally its carrier |σ|) is
closed in |K |. Its interior, as a cell, is denoted by �σ. By the above property (2), |K |
is the disjoint union of the interior of its simplices. In other words, every point in
|K | belongs to the interior of exactly one supporting simplex. A subdivision of K
is any simplicial complex L such that |K | = |L | and such that every simplex of L is
contained in a simplex of K . Two complexes are isomorphic if there is a one-to-one
correspondence between their simplices that preserves dimension and commutes
with faces: A face of a simplex corresponds to a face of the corresponding simplex.
The complexes are said PL homeomorphic when they have isomorphic subdivisions.

A simplicial complex can be described combinatorially by an abstract simplicial
complex. This is a collection of finite subsets of a ground set with the hereditary
property: Any subset of a subset in the collection is itself in the collection. The subsets
in the collection are its abstract simplices. A simplicial map f : K → L between
abstract simplicial complexes is a map between their vertex sets that sends simplices
to simplices: σ ∈ K =⇒ f (σ) ∈ L . For geometric simplicial complexes simplicial
maps extend uniquely to continuous maps by affine interpolation over each simplex of
the value at its vertices. Up to homeomorphism, we can realize an abstract simplicial

1This assumption facilitates the definition of the join operation. See Section 3.1.
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complex by gluing along common faces realizations of its simplices in some Euclidean
space. Alternatively, the realization of an abstract simplicial complex A with ground
set V can be defined as the subset of [0,1]V , with the induced topology, of all points
(tv )v∈V such that {v : tv > 0} ∈ A and

∑

v∈V tv = 1.
The barycentric subdivision, sd K , of a geometric simplicial complex is obtained

by subdividing its simplices recursively by dimension order: The edges are replaced
by starring their two boundary points from their barycenter, then the triangles are
replaced by starring their already subdivided edges from their barycenter, and so
on. This process is repeated, each time replacing a simplex by a cone with apex
its barycenter over its already subdivided boundary. Each simplex of the resulting
barycentric subdivision is the convex hull of the barycenters of an increasing sequence
of simplices of K . The abstract simplicial complex associated to sd K has thus K \ {;}
itself for ground set and its nonempty simplices have the form (σ0, . . . ,σk ) where
σ0 ⊂ · · · ⊂σk is a strictly increasing sequence of nonempty simplices of K .

1.2 Embeddings

A topological embedding is just a map inducing a homeomorphism onto its image
(endowed with the induced topology of the target space). For a compact space, in
particular for a finite complex, an embedding is just a continuous injective map. For
a simplicial complex K , we may consider more constrained kinds of embeddings. A
linear mapping2 of K is a map f : |K | ,→Rd whose restriction to each simplex of K
is affine. In other words, f sends simplices in K to geometric simplices in Rd , and
is entirely determined by the image of the vertices of K . The mapping is piecewise
linear, or PL, if K has a subdivision K ′ such that f is a linear mapping of K ′. A linear
embedding3 of K is a linear mapping which is also an embedding, and similarly for
a PL embedding. The three notions of embeddings (topological, PL and linear) are
increasingly restrictive in the sense that K may have a topological embedding but no
PL embedding into Rd , while K may have a PL embedding but no linear embedding
into Rd . For more details on this, see Section 2 and Appendix C in [MTW11] or the
notes of Section 5.1 in [Mat08]. From a computational perspective, we will be mainly
interested in PL and linear embeddings.

The weak Whitney theorem has a simple extension to complexes.

Proposition 1.1. Any finite simplicial complex of dimension n embeds linearly into
R2n+1.

PROOF. Define a linear mapping f of the n dimensional complex K into R2n+1

by mapping the vertices of K to points in general position in R2n+1, i.e., such that
no hyperplane contains more than 2n +1 points. One may for instance choose the
points on the moment curve t 7→ (t , t 2, . . . , t 2n+1). We claim that f is an embedding.
This is clearly the case when restricted to any simplex of K : The simplex has at most
n +1 vertices which are sent to affinely independent points by the general position

2It is common practice in PL topology to use the term linear where the term affine would be more
appropriate.

3Linear embeddings are also called geometric embeddings.
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assumption. To see that f is injective we just need to prove that distinct simplices have
their interior sent to disjoint sets. So, let σ = [v1, . . . , vk ] and τ = [w1, . . . , wℓ] be two
distinct simplices of K . Since k + ℓ≤ 2n +2, the general position assumption implies
that the image points f (v1), . . . , f (vk ), f (w1), . . . , f (wℓ) span a simplex of dimension
k + ℓ−1 and that f (σ), f (τ) are two distinct faces of this simplex. It follows that f (�σ)
and f (�τ) are indeed disjoint. As already observed, injectivity implies embedding for
finite simplicial complexes.

Exercise 1.2. Prove that any set of points on the moment curve t 7→ (t , t 2, . . . , t d ) in Rd

is in general position, i.e., that no hyperplane contains more than d of the points.

In view of the Proposition, the question of whether an n-dimensional complex
embeds into Rd is only interesting for d ≤ 2n . In these notes we will focus on the case
d = 2n . There is indeed a nice invariant that leads to practical algorithms in this case.
In the next section we consider the case n = 1, which amounts to decide if a graph is
planar.

2 Graph embedding

The graph planarity problem has received much attention in the computer science
community, culminating with the linear time algorithm of Hopcroft and Tarjan [HT74].
It happens that topological, PL and linear embeddability are equivalent for embedding
graphs into the plane, so that any planar graph may be drawn with straight lines for
the edges. See the lecture notes [LdM17] for more details. The most striking result
concerning graph planarity is probably the Kuratowski’s criterion in terms of forbidden
graphs. Recall that the complete graph K5 is obtained by connecting five vertices in all
possible ways, while the complete bipartite graph K3,3 is obtained by connecting each
of three independent (i.e., pairwise non-connected) vertices to each of three other
independent vertices.

Theorem 2.1 (Kuratowski, 1929). A graph is planar if and only if it does not contain a
subdivision of K5 or K3,3 as a subgraph.

See [LdM17] for a proof. We shall refer to this theorem but use a different path
to derive a planarity criterion due to van Kampen (1932) that is more amenable to a
generalization to higher dimensions. We follow the presentation of Wu [Wu85].

Let G = (V , E ) be a graph with vertex set V and edge set E . Consider the set C2 of
unordered pairs of disjoint edges. We denote by σ×τ such an ordered pair, where
σ,τ ∈ E do not share any vertex. (Remark that σ×τ= τ×σ.) Intuitively, σ×τ is a
2-dimensional rectangular cell. We denote by C 2 the vector space ZC2

2 (we write Z2

for Z/2Z), viewing vectors as maps C2→Z2. Similarly, we consider the set C1 of pairs
(v,σ) ∈ V × E such that v is not an endpoint of σ and the vector space C 1 of maps
C1→ Z2. We also write v ×σ for (v,σ). The coboundary operator is the morphism
δ : C 1→C 2 defined for any c ∈C 1 by4

δc (σ×τ) = c (v1×τ) + c (v2×τ) + c (w1×σ) + c (w2×σ)
4It is common practice to write δc for δ(c ).
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whereσ×τ ∈C2, and v1, v2 (resp. w1, w2) are the endpoints ofσ (resp. τ). Let (σ×τ)∗ ∈
C 2 take value 1 atσ×τ and 0 elsewhere. Similarly, let (v ×τ)∗ ∈C 1 take value 1 at v ×τ
and 0 elsewhere. Then, the above formula amounts to define the coboundary on the
canonical basis of C 1 by

δ(v ×τ)∗ =
∑

v∈σ
(σ×τ)∗ (1)

It appears that the quotient C 2/Imδ is a topological invariant5.

Lemma 2.2. PL homeomorphic graphs have isomorphic quotient groups C 2/Imδ.

PROOF. Since any subdivision of a graph can be obtained by repeatedly splitting
edges, it is enough to prove the lemma for a graph G ′ obtained by splitting an edge
e ∈ E of a graph G = (V , E ). Let v be the new vertex splitting e and let e1, e2 be the
resulting edges in G ′. We denote with a prime the groups or maps related to G ′. Hence,
δ′ : C ′1→C ′2 is the coboundary operator for G ′. We view edges in E \ {e } as edges of
G ′ as well as edges of G . Define the morphisms s1 : C ′1→C 1 and s2 : C ′2→C 2 by

s1(c )(u ×τ) =

¨

c (u × e1) + c (u × e2) if τ= e ,

c (u ×τ) otherwise
for c ∈C ′1, u ∈V ,τ ∈ E , u ̸∈τ

and

s2(d )(σ×τ) =

¨

d (σ× e1) +d (σ× e2) if τ= e ,

d (σ×τ) ifσ,τ ̸= e
for d ∈C ′2,σ,τ ∈ E ,σ∩τ= ;

It is easily checked that s1 and s2 are onto and satisfy δs1 = s2δ
′. The proof is left

as an exercise. It follows that s2(Imδ′) ⊂ Imδ and that s2 induces an epimorphism
s ∗2 : C ′2/Imδ′→C 2/Imδ. It remains to see that s ∗2 is injective. So, suppose that s ∗2 (d +
Imδ′) = 0, i.e. that s2(d ) ∈ Imδ. We have s2(d ) = δc for some c ∈ C 1. By surjectivity
of s1, c = s1c ′ for some c ′ ∈ C ′1, so that s2(d ) = δs 1(c ′) = s2(δ′c ′), or equivalently,
s2(d −δ′c ′) = 0. Now, it is easily seen that this implies d −δ′c ′ =

∑

σασδ
′(v ×σ)∗ for

some coefficients ασ ∈Z2 (see (1)). In other words, ker s 2⊂ Imδ′. We conclude that
d ∈ Imδ′ as desired.

For an element c ∈C 2, we denote by [c ]2 its coset in C 2/Imδ.

2.1 The mod 2 van Kampen obstruction

Two paths in the plane are said in general position if each one avoids the endpoints of
the other one, except at common endpoints, and if they otherwise cross transversally
at their finitely many intersection points. An immersion into the plane of G = (V , E )
is said in general position if the image of its edges are pairwise in general position.

5This topological invariant is the second equivariant cohomology group of the deleted product of G .
Equivalently, this is the second (ordinary) cohomology group of the same deleted product quotiented
by the action that exchanges coordinates in the (deleted) product.
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We now associate to any PL immersion f : |G | →R2 in general position the element
c f ∈C 2 given by

c f (σ×τ) = | f (σ)∩ f (τ)| mod 2, forσ,τ ∈ E ,σ∩τ= ;

Lemma 2.3. [c f ]2 is independent of f .

We give two proofs, a short proof by picture, and a longer formal one.

PROOF BY PICTURE. Every two general position immersions are related by a sequence
of isotopies ofR2 and of local moves as on Figure 1. An isotopy or any of the I-IV moves

I II III IV V

v

e

Figure 1: The first three moves I, II, III are known as (shadows of) Reidemeister moves.
The IV move amounts to a transposition in the edge order around a vertex, while the V
move is referred to as a finger move or an (e , v )-move.

leaves c f unchanged while an (e , v )-move results in an additional term δ(v × e )∗ in c f .
In any case, [c f ]2 is preserved.

Exercise 2.4. Figure 1 actually applies to smooth curves. Can you adapt the proof and
find a list of moves specific to the PL category?

A formal proof would require showing that the five moves in Figure 1 are the only
required moves to transform an immersion into another one. (See Exercise 2.4 for the
PL case.) We give below a more combinatorial proof due to Wu [Wu85]. We first give a
simple relation between winding number and intersection number. Recall that the
winding number w (γ, p ) of a plane closed curve γwith respect to a point p ̸∈ γ is the
total number of times γ travels counterclockwise around6 p .

Lemma 2.5. Let w2(·, ·) =w (·, ·) mod 2 be the mod 2 winding number. For any path π
with endpoints p , q in general position with respect to a closed curve γ:

w2(γ, p )−w2(γ, q ) = |γ∩π| mod 2

where |γ∩π| counts the number of intersections between γ and π.

6Formally, identifying the plane with C, w (γ, p ) = 1
2πi

∮

γ
dz

z−p =
1

2πi

∫ β

α

γ′(t )
γ(t )−p d t , where γ : [α,β ]→C.
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PROOF. We prove the lemma when γ and π are PL curves. The case of continuous
curves follows by PL approximation. It is well-known that w (γ, p ) is the algebraic
number of intersections of γwith a ray originating from p . In particular, all rays with
origin p have the same algebraic number of intersections with γ. As we move from
p towards q along π, aligning the rays from p and from q we see that the winding
number changes exactly as we traverse γ and the change is ±1 depending on the
orientation of γ and π at the intersection point. The lemma follows.

PROOF OF LEMMA 2.3, WU’S VERSION. Let f , g : G →R2 be two immersions of G in
general position.

• Let e = [p , q ] be an edge of G . We first consider the case where f and g coincide
on G − e (the graph G with the interior of edge e removed). For every edges
σ,τ distinct from e , we obviously have c f (σ×τ) = cg (σ×τ) since both values
only depends on the embedding ofσ and τ. Let Ce := f (e ) · g (e )−1 be the closed
curve formed by concatenating f (e )with the path g (e ) traversed in the opposite
direction. Consider the cochain

c =
∑

v

w2(Ce , f (v ))(v × e )∗

where the sum runs over all vertices of G not incident to e , i.e., distinct from p
and q . We compute, writing ∂ σ= s − r

c f (σ× e )− cg (σ× e )≡ | f (σ)∩ f (e )| − |g (σ)∩ g (e )| mod 2

≡ | f (σ)∩Ce | mod 2 (since f (σ) = g (σ))
=w2(Ce , f (s ))−w2(Ce , f (r )) (by Lemma 2.5)

On the other hand, we compute

δc (σ× e ) = c (∂ σ× e ) + c (σ× ∂ e )
=w2(Ce , f (s ))−w2(Ce , f (r ))

For disjoint edgesσ,τboth distinct from e we trivially have c f (σ×τ)−cg (σ×τ) =
c (∂ σ × τ) + c (σ × ∂ τ) = 0. It follows that c f − cg = δc , or equivalently that
[c f ]2 = [cg ]2.

• We now consider the case where f and g only agree on the vertices of G . Let
e1, . . . , em be the edges of G . We define immersions fi that agree with g on
e1, . . . , ei and with f on the remaining edges. Putting f0 = f , we have by the
preceding paragraph, that [c fi−1

]2 = [c fi
]2 for i = 1, . . . , m . It follows that [c f ]2 =

[cg ]2.

• We finally consider the case of arbitrary f and g in general position. Denote by
v1, . . . , vn the vertices of G . Using an induction on the number of vertices one
can construct a PL homeomorphism H of the plane that sends f (vi ) to g (vi ). On
the one hand, we have [c f ]2 = [cH ◦ f ]2 and on the other hand [cH ◦ f ]2 = [cg ]2 by the
preceding paragraph7. We conclude that [c f ]2 = [cg ]2 in the general case.

7This argument found by Axel Péneau simplifies the proof of Wu.
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In view of Lemma 2.3, we denote by8 κ2(G ) the value of [c f ]2 computed from any
immersion f in general position. It appears that κ2(G ) only depends on the topology
of |G | and not on its cellular decomposition. In the proof of Lemma 2.2, we intro-
duced an edge splitting isomorphism s ∗2 : C ′2/Imδ′→C 2/Imδ. By composing such
morphisms, we obtain a natural subdivision isomorphism s ∗ between the quotients
C 2/Imδ computed for a subdivision of a graph or the graph itself. Likewise, if H is a
subgraph of G , there is a natural inclusion morphism ι∗ between the quotient groups
for G and H . The topological invariance of κ2(G ) is formalized in the following easy
lemma whose proof is left to the reader.

Lemma 2.6. If ι : H ,→G is a cellular inclusion, we have ι∗(κ2(G )) = κ2(H ). Similarly,
if G ′ a subdivision of G and s is the corresponding subdivision operator, we have
s ∗(κ2(G ′)) = κ2(G ).

The topological invariant κ2(G ) of G is called the mod 2 van Kampen obstruction.
Note that c f = 0 if f is an embedding. Hence, κ2(G ) = 0 whenever G is planar. It thus
follows from the next lemma that the Kuratowski forbidden graphs K5 and K3,3 are
non-planar.

Lemma 2.7. κ2(K5) and κ2(K3,3) are each nonzero.

PROOF. Compute κ2 using your preferred embeddings of K5 and K3,3. Can you draw
them with a single crossing?

We are now ready to state that the van Kampen obstruction is a good invariant to test
graph embeddability in the plane.

Theorem 2.8. A graph is planar if and only if its mod 2 van Kampen obstruction cancels.

PROOF. We already observed that the condition is necessary. Suppose that a graph
G satisfies κ2(G ) = 0. By the preceding lemmas 2.6 and 2.7, G cannot contain a
subdivision of K5 or K3,3. It ensues from Kuratowski’s theorem that G is planar.

This theorem is known as the (strong) Hanani-Tutte theorem in graph theory and is
expressed as follows: any (generic) immersion of a non-planar graph contains two
disjoint edges whose images cross oddly.

3 The van Kampen-Flores Theorem

The mod 2 van Kampen obstruction constructed for a graph G as in the previous
section can be interpreted as a certain equivariant cohomology class of the deleted
product G ×∆G of G . This deleted product is composed of all the products of disjoint

8The subscript 2 is used to emphasize that we consider mod 2 cohomology.
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cells (vertex or edge) of G and has the same equivariant homotopy type (it is even
an equivariant deform retract) as the topological deleted product |G | × |G | \∆, where
∆ = {(x , x ) ∈ |G | × |G |} is the diagonal of |G | × |G |. Here, by equivariant we refer to
invariance with respect to some action of Z2 on the deleted product9. The mod 2 van
Kampen obstruction for graphs can be generalized to complexes of dimension n > 1
using integer instead of Z2 coefficients and its non-vanishing is indeed an obstruction
to embedding inR2n . For n > 2 this obstruction also provides a sufficient condition for
embeddability in R2n . However, this is not the case for n = 2 as Freedman, Krushkal
and Teichner [FKT94] constructed a relatively simple simplicial complex of dimension
2 whose van Kampen obstruction vanishes but that cannot be embedded in R4. In
this section we look at a slightly different approach based on the deleted join rather
than the deleted product. It leads to the van Kampen (1932) – Flores (1933) theorem
that for every dimension n the n-skeleton of the (2n +2)-simplex does not embed into
R2n . We follow the exposition of de Longueville [dL13, Ch. 4].

3.1 Join operations

3.1.1 The join

The join X ∗Y of two topological spaces X and Y is the quotient X ×Y × I /∼where
I = [0, 1] is the unit interval and the equivalence classes of∼ are of the form {x }×Y ×{0},
X ×{y }× {1} and are otherwise singletons. Intuitively, X ∗Y is the “cube” X ×Y × I
where we have collapsed the face X ×Y ×{0} to X and the face X ×Y ×{1} to Y .

X

Y

I X ∗Y

Suppose that X and Y are subspaces of some Euclidean space, and that X and Y
are contained in respective affine subspaces that are affinely independent, meaning
that the union of affinely independent pointsets, one in each subspace, is itself inde-
pendent. Then, X ∗Y is homeomorphic to the union of all line segments connecting
points of X to points of Y . The points of this geometric join are convex combina-
tions of the form (1− t )x + t y with (x , y , t ) ∈ X × Y × I . The formal combination
(1− t )x ⊕ t y can also be used to describe points of the topological join if we consider
that 0.x ⊕1.y = 0⊕ y is independent of x and 1.x ⊕0.y = x ⊕0 is independent of y .
When Y = X , beware that x ⊕ 0 and 0⊕ x represent points in disjoint copies of X .
Formally, one should consider two distinct copies X ×{1} and X ×{2} of X and write
(x , 1)⊕0 and 0⊕ (x , 2). We however drop the second component for concision.

The join σ ∗ τ of two simplices is a simplex of dimension dimσ+ dimτ+ 1. If
σ,τ are geometric simplices with affinely independent vertices, the vertices of their

9It is also possible to quotient the deleted product by this action and to consider the usual cohomol-
ogy on the quotient space.
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geometric join is the union of their vertices. In particular, a simplex with vertices
. . . , pi , . . . may be written as ∗i pi . Considering abstract simplices as subsets of a ground
set, the join operation of simplices thus corresponds to the union of subsets. More
generally, the join of two simplicial complexes K , L , either geometric or abstract, is
the simplicial complex

K ∗ L = {σ ∗τ |σ ∈ K ,τ ∈ L}

When K = L , we insist on the fact that the empty set is considered as a simplex in K
and that for allσ ∈ K , the simplicesσ ∗ ; and ; ∗σ are distinct in K ∗K .

Exercise 3.1. Prove that the geometric join of two embedded subspaces is indeed
homeomorphic to their topological join. Deduce that for simplicial complexes K and
L the carrier of their join |K ∗ L | is homeomorphic to the join of their carriers |K | ∗ |L |

Note that simplicial complexes behave well with respect to the join operation. This
is less true for the product operation as it is not so immediate to obtain a simplicial
decomposition of the product of two simplicial complexes.

3.1.2 The deleted join

The deleted join of a simplicial complexes K is the subcomplex of K ∗K defined as

K ∗∆ K = {σ ∗τ |σ,τ ∈ K ,σ∩τ= ;}

More generally, if K and L are subcomplexes of a same complex we set

K ∗∆ L = {σ ∗τ |σ ∈ K ,τ ∈ L ,σ∩τ= ;}

The deleted join can also be defined for a topological space X . Using the formal convex
combination notation, we define

X ∗∆ X := X ∗X \ {
1

2
x ⊕

1

2
x | x ∈ X }

The simplicial and topological deleted join are closely related.

Proposition 3.2. For any simplicial complex K , the space |K ∗∆ K | is an equivariant
deform retract of |K | ∗∆ |K |. In particular, both spaces have the same homotopy type.

|K |
|K |

I
|K ∗K |= |K | ∗ |K | |K ∗∆ K | |K | ∗∆ |K |

PROOF. Denote by ρ : |K | ∗∆ |K | → |K ∗∆ K | the retraction we are looking for. Geo-
metrically, if∆′ := |K | ∗ |K | \ |K | ∗∆ |K |= { 1

2 x ⊕ 1
2 x | x ∈ |K |} is the diagonal of |K | ∗ |K |,

we shall defineρ so that it retracts every conic slice of the form p ∗∆′ with p ∈ |K ∗∆K |
to p . The next figure illustrates the case where K is a 1-simplex.
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q
ρ(q ) = p |K |

|K | ∆′

More formally, denote by Supp(x ) the supporting simplex of a point x ∈ |K |. We have

|K ∗∆ K |= {(1− t )x ⊕ t y | x , y ∈ |K | and Supp(x )∩Supp(y ) = ;}

We let ρ((1− t )x ⊕ t y ) := (1− t ′)x ′⊕ t y ′ where x ′, y ′, t ′ are defined as follows. Denote
by V the set of vertices of K and by (xv )v∈V and (yv )v∈V the respective barycentric
coordinates of x and y as defined in Section 1.1. We let x ′ and y ′ be the points with
respective barycentric coordinates (x ′v )v∈V and (y ′v )v∈V satisfying

(1− t ′)x ′v =max{(1− t )xv − t yv , 0}/S and t ′y ′v =max{t yv − (1− t )xv , 0}/S

with S = Sx +Sy , Sx =
∑

v∈V

x ′v , Sy =
∑

v∈V

y ′v and t ′ = Sy /S

Note that the division by S is well-defined. Indeed, S = 0 implies (1− t )xv = t yv for all
v ∈V , whence by summing over V , t = 1/2 and x = y . In turn, (1− t )x ⊕ t y = 1

2 x ⊕ 1
2 x

cannot be a point of |K | ∗∆ |K |, and S does not cancel on |K | ∗∆ |K |. Since x ′ and y ′

have disjoint support we have (1− t )x ′⊕ t y ′ ∈ |K ∗∆ K | as desired. Also, when x and
y have disjoint support, we have x ′ = x , y ′ = y and t ′ = t . It follows that ρ is the
identity over |K ∗∆ K |. Moreover, the linear interpolation between ρ and the identity
on |K |∗∆ |K | is a well-defined equivariant map at every interpolating parameter. (Refer
to the next section for the notion of equivariance.) This concludes the proof of the
lemma.

3.2 The Z2-index

A Z2-space (X ,α) is a space X together with an action of Z2 on it. Such a Z2-action is
determined by the action of 1 which must be a continuous involution α : X → X . We
may speak of the Z2-space X , omitting the involution when the Z2-action is implicitly
clear. The Z2-action, or Z2-space, is free if α has no fixed point. The most important
example of free Z2-space is given by the antipodality acting on the Euclidean sphere
Sd . Another basic examples are provided by squaring a space, as in X ×X or X ∗X , and
exchanging coordinates for the Z2-action. To be specific for X ∗X , this action is given
by (1− t )x ⊕ t y 7→ t y ⊕ (1− t )x , or equivalently by (x , y , t ) 7→ (y , x ,1− t ), recalling
that X ∗X is a quotient of X ×Y × I . These actions are not free, but become free if we
restrict the squared space to its deleted product or its deleted join.

The Z2-spaces form a category whose morphisms are called Z2-maps or equivari-
ant maps. A continuous map f : (X ,α)→ (Y ,β ) is equivariant if it commutes with the
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Z2-actions, i.e., if the diagram

X

α
��

f // Y

β
��

X
f // Y

is commutative. Z2-spaces have their simplicial counterpart where we ask that the
spaces are simplicial complexes and the involved maps are simplicial. The above
sphere example has a simplicial version. Consider the barycentric subdivision sd(∂ σd+1)
of the boundary of a (d +1)-simplex10 σd+1 = 2[d+2]. The vertices of sd(∂ σd+1) are thus
the proper subsets of [d +2]. Consider the antipodal simplicial map αs on sd(∂ σd+1)
sending such a subset to its complement in [d +2]. Then (sd(∂ σd+1),αs ) is a simplicial
Z2-complex Z2 homeomorphic to Sd endowed with the antipodality.

Let us write X ⪯Z2 Y if there exists an equivariant map between the Z2-spaces
X and Y . It is easily seen that ⪯Z2 is a reflexive and transitive relation on Z2-spaces.
Define the Z2-index, Ind(X ), of a Z2-space X as the minimum d such that X ⪯Z2 Sd ,
i.e., such that there exists an equivariant map X → Sd . We put Ind(X ) =∞ is no such
d exists. The transitivity of ⪯Z2 directly implies that the Z2-index is non-decreasing for
this relation.

Exercise 3.3. Show that any non free Z2-space is an upper bound for ⪯Z2 and that its
Z2-index is infinite.

Proposition 3.4. Ind(Sd ) = d .

PROOF. We obviously have Ind(Sd ) ≤ d by reflexivity of ⪯Z2 . The other direction
Ind(Sd )≥ d is a direct consequence of the Borsuk-Ulam theorem. Indeed, one of the
classical formulation of this theorem says that every continuous map Sd →Rd must
send a pair of antipodal points to the same point. The existence of an equivariant
map Sd → Sn with n < d would however provide a map Sd → Sn ,→Rd without this
property.

Lemma 3.5. Ind(Rd ∗∆Rd )≤ d

PROOF. We just need to exhibit a continuous equivariant map Rd ∗∆Rd → Sd . The
map Rd ×Rd × I →Rd+1, (x , y , t ) 7→ (1−2t , (1− t )x − t y ) is constant on each fiber of
Rd ×Rd × I → Rd ∗Rd and thus quotients to a map Rd ∗Rd → Rd+1. Moreover, the
norm of this map never cancels on Rd ∗∆Rd ⊂Rd ∗Rd , so that the map

Rd ∗∆Rd → Sd , (1− t )x ⊕ t y 7→
(1−2t , (1− t )x − t y )
∥(1−2t , (1− t )x − t y )∥

is well-defined. We easily check that it is equivariant.

Exercise 3.11 in the next section asks you to strengthen Lemma 3.5 to show that
Ind(Rd ∗∆Rd ) = d .

10As usual we write [n ] for {1, . . . , n}.
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3.3 An obstruction to embedding

Suppose that f : |K | ,→ Rd is an embedding of a simplicial complex K . Then, the
Z2-map f ∗ f : |K | ∗ |K | → Rd ∗Rd , (1− t )x ⊕ t y 7→ (1− t ) f (x )⊕ t f (y ) restricts to a
Z2-map |K ∗∆ K | →Rd ∗∆Rd . It ensues that Ind(|K ∗∆ K |)≤ Ind(Rd ∗∆Rd ). In view of
Lemma 3.5, we have

Proposition 3.6. If Ind(|K ∗∆ K |)> d then K has no embedding in Rd .

In fact, theZ2-map f ∗ f : |K ∗∆K | →Rd ∗∆Rd is well-defined as soon as f (x ) ̸= f (y )
for every x , y ∈ |K |with disjoint support. It follows that the condition Ind(|K ∗∆K |)> d
implies that for every map |K | →Rd there are two disjoint simplices whose images
intersect.

We will now apply Proposition 3.6 to to prove that some d -dimensional complexes
cannot be embedded intoRd . Before that we introduce yet another simple operation
on complexes.

The combinatorial Alexander dual. Let K be a proper subcomplex of the n − 1
dimensional simplex 2[n ]. (Note that every complex is a subcomplex of the simplex
over its vertices.) Since K is a proper subcomplex it must be included in the boundary
of the (n −1)-simplex. This boundary can be identified with a sphere and the intuition
behind the Alexander dual is to take the complement of the antipodal image of K on
the sphere. More precisely, the Alexander dual of K with respect to 2[n ] is the proper
subcomplex of 2[n ] defined by

K A = {σ ∈ 2[n ] | [n ] \σ ̸∈ K }

In other words, K A is composed of the simplices whose complements are not in K . The
following exercise makes the above intuition more concrete. Here, by a subcomplex
induced by a subset W of vertices we mean the set of simplices whose vertices fall in
W .

Exercise 3.7. Let V := K \ {;} ⊂ 2[n ] denote the set of vertices of sd K . Show that sd K A

is the subcomplex of sd(∂ 2[n ]) induced by the complement of αs (V ), where αs is the
antipodal simplicial map on sd(∂ 2[n ]) sending a vertexσ ∈V to its complement [n ]\σ.

The proof of the following lemma is immediate from the definitions.

Lemma 3.8. Let K ⊂ 2[2d+3] be the d -skeleton of the (2d +2)-simplex. Then K A = K .

Bier spheres. Given a proper subcomplex K of 2[n ], the Bier sphere of K with respect
to n is

Biern (K ) = K ∗∆ K A

Quite surprisingly the topology of the Bier sphere is independent of K . To see this we
first subdivide Biern (K ) using a subdivision process specific to subcomplexes of the
join of complexes. Given the simplicial complexes K and L , the shore subdivision of
a subcomplex J ⊂ K ∗ L is given by

ssd J =
⋃

σ∗τ∈J

sdσ ∗ sdτ
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τ

σ ∗τ sdσ ∗ sdτ sd(σ ∗τ)

σ

Comparison between the shore and barycentric subdivision of the 2-simplex expressed as the
join of an edge and a vertex.

Being a subdivision, the shore of J has a carrier homeomorphic to |J |.

Proposition 3.9. ssd(Biern (K )) is isomorphic to sd(∂ 2[n ]).

PROOF. For a simplexσ ∈ sd(∂ 2[n ]), we write ∪σ⊂ [n ] for the union of its vertices,
viewed as proper subsets of [n ]. Recall that αs is the antipodal simplicial map on
sd(∂ 2[n ]). We have

ssd(Biern (K )) =
⋃

σ∗τ∈Biern (K )

sdσ ∗ sdτ=
⋃

σ∈K ,τ∈K A ,
σ∩τ=;

sdσ ∗ sdτ=
⋃

s ∈sd K , αs (∪t ) ̸∈K ,
∪s ⊂ αs (∪t )

s ∗ t

To see the last equality, first note that s ∈ sdσ with σ ∈ K is equivalent to s ∈ sd K .
Similarly, t ∈ sdτwithτ ∈ K A is equivalent to t ∈ sd K A. In turn, writingτ0 ⊂ · · · ⊂τℓ for
the vertices of t , this means [n ] \τℓ ̸∈ K , i.e., αs (∪t ) ̸∈ K . Finally, writingσ0 ⊂ · · · ⊂σk

for the vertices of s , the conditions s ∈ sdσ, t ∈ sdτ becomes σk ∈σ and τℓ ∈ τ. It
follows that the conditionσ∩τ= ; reduces toσk ∩τℓ = ;which in turn can be written
∪s ⊂αs (∪t ).

We now consider the simplicial map ϕ : ssd(Biern (K )) → sd(∂ 2[n ]) sending the
simplex s ∗ t to the simplex s ∗αs (t ). Equivalently,ϕ sends a vertex of the formσ0 ∗; to
itself and of the form ; ∗τ0 to ; ∗αs (τ0). This map is well-defined since the condition
∪s ⊂αs (∪t ) implies that the vertices of s ∗αs (t ) form an increasing sequence of subsets
of [n ], hence a simplex in sd(∂ 2[n ]). ϕ is injective and it remains to see that it is
surjective. For this, consider a simplexσ of sd(∂ 2[n ]) with verticesσ0 ⊂ · · · ⊂σm . Let k
be the minimum index such thatσk ̸∈ K . Then, defining s as the simplex with vertices
σ0 ⊂ · · · ⊂σk−1 and defining t as the simplex with the remaining vertices ofσ, we see
thatσ=ϕ(s ∗αs (t )).

We are now ready to prove that

Theorem 3.10 (van Kampen - Flores). The d -skeleton of the (2d +2)-simplex does not
embed in R2d .

PROOF. Let K ⊂ 2[2d+3] be the d -skeleton of the (2d + 2)-simplex. By Lemma 3.8
and Proposition 3.9, Bier2d+3(K ) = K ∗∆ K is isomorphic to the (2d +1)-sphere. From
Proposition 3.4, we have Ind(K ∗∆ K ) = 2d +1 and we conclude by invoking Proposi-
tion 3.6.

Exercise 3.11. Consider11 the d -simplexσ= 2[d+1] as a subcomplex of 2[d+2]. What is the
Alexander dual ofσ? Deduce that Ind(σ ∗∆σ) = d . Conclude that Ind(Rd ∗∆Rd )≥ d .

11This exercise was suggested by Axel Péneau.
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Exercise 3.12. Consider the simplicial complex represented in the figure below.

1

1

2

2

3

3

4

5 6

It is composed of 6 vertices and 10 triangles forming a disk, the boundary edges of
which should be identified according to the boundary vertex numbering. This complex
is topologically a projective plane. Mimic the proof of the van Kampen - Flores theorem
to prove that the projective plane cannot be embedded into R3.
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