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We already saw that every m-dimensional complex embeds linearly into R2m+1.
What about the existence of linear embeddings intoRd with d ≤ 2m? It turns out that
independently of obstruction theories, like Whitney or van Kampen obstructions, this
question is decidable. We first look at a combinatorial approach based on the notion
of chirotope for a point configuration.

1 Affine point configurations

Given a set {p1, . . . , pn} of n points in Rd , its chirotope is the map {1, . . . , n}d+1 →
{−1, 0, 1} defined by

(i0, . . . , id ) 7→ sign(det

�

1 · · · 1
pi0
· · · pid

�

) (1)

In other words, the chirotope returns for every (d +1)-tuple of points the orientation of
the d -simplex defined by those points. Here, the orientation is assumed to be zero if the
points are affinely dependent. Intuitively, the chirotope records the relative positions
of the points in a point configuration. For instance, it is easily seen that the chirotope
determines the combinatorial structure of the convex hull of a point configuration.
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Not every map {1, . . . , n}d+1→{−1, 0, 1} can be the chirotope of a point configuration.
The map has to satisfy certain conditions related to the Grassman-Plücker relations
and to Radon partitions.

1.1 Grassman-Plücker relations

Let V = (v1, . . . , vn ) be a family of n vectors inRd . As usual, put [n ] := {1, . . . , n}. For a
sequence I = (i1, . . . , id ) of d indices in [n ], we denote by

mI := det(vi1
, . . . , vid

)

the determinant with respect to the canonical basis ofRd of the d -tuple of vectors of V
indexed by I . The minors (mI )I∈([n ]d ), where

�[n ]
d

�

⊂ [n ]d denotes the set of all increasing

sequences of d indices in [n ], are the homogeneous Plücker coordinates associated
to V .

Theorem 1.1. The homogeneous Plücker coordinates associated to V satisfy the
Grassman-Plücker relations:

∀I ∈
�

[n ]
d +1

�

,∀J ∈
�

[n ]
d −1

�

:
d
∑

s=0

(−1)s mI−is
m J+is

= 0 (2)

where I − is is obtained by deleting is in I = (i0, . . . , id ) , and J + is is obtained by
appending is at the end of J . Note that J +is is not necessarily increasing and that m J+is

cancels whenever is ∈ J .

PROOF. For J = ( j0, . . . , jd−2) fixed, consider the (d +1)-linear map f : (Rd )n+1→R
given by

(u0, . . . , ud ) 7→
d
∑

s=0

(−1)s det(u0, . . . ,cus , . . . , ud )det(v j0
, . . . , v jd−2

, us )

We easily check that f is alternating. However, an alternating (d +1)-linear map over
a d dimensional space must be zero. In particular, f (vi0

, . . . , vid
) = 0, which is precisely

Equation (2).

Exercise 1.2. Prove that the map f in the above proof is indeed alternating.

Cultural note: The homogeneous Plücker coordinates provide an embedding of the

Grassmannian Gr(d ,Rn ) into the projective space P
�

∧d Rn
�

of the d -fold exterior

product
∧d Rn of Rn . Let us briefly explain why. Recall that Gr(d ,Rn ) is the set of

d dimensional subspaces of Rn . The exterior (or Grassmann) algebra
∧

Rn can be
defined as the quotient of the tensor algebra

⊗

Rn by the two-sided ideal generated
by the tensor products {v ⊗ v }v∈Rn . The exterior product ∧ thus induced by the tensor
product is antisymmetric as can be seen by expanding (x+y )⊗(x+y ). As a vector space,
the d -fold exterior product

∧d Rn has a basis composed of the d -vectors eI = ei1
∧· · ·∧
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eid
, where I = (i1, . . . , id ) ∈

�[n ]
d

�

and (e1, . . . , en ) is the canonical basis ofRn . Consider a
family W = (w1, . . . , wd ) of d vectors in Rn as a d ×n matrix whose columns are the
components of the vi expressed in the canonical basis. Viewing the transpose matrix
W t as a family V = (v1, . . . , vn ) of n vectors inRd , we compute w1∧ · · · ∧wd =

∑

I mI eI ,
where the mI are the homogeneous Plücker coordinates associated to V . One can
show that two families of d independent vectors have proportional wedge products if
and only if they span the same vector space, whence the claimed embedding. In fact,
the Grassman-Plücker relations (2) are a necessary and sufficient condition on the mI

to come from a wedge product of d vectors, the so-called decomposable d -vectors.

The Grassmannian Gr(d ,Rn ) is thus embedded in P
�

∧d Rn
�

as a projective algebraic
variety determined by quadratic equations.

1.2 Radon partitions

LetP be a set of points in Rd . Any partitionP =P ′ ∪P ′′ such that the convex hulls
ConvP ′ and ConvP ′′ have a nonempty intersection is called a Radon partition of
P . Recall thatP is in general position if no affine hyperplane contains more than d
points ofP .

Lemma 1.3. LetP =P ′ ∪P ′′ be a partition of a set of d +1 points in general position
in Rd . Then ConvP ′ and ConvP ′′ are disjoint.

Note that the lemma just says that two faces of a d -simplex with disjoint vertex
sets are indeed disjoint.

PROOF. WriteP = {pi }i∈I ,P ′ = {pi }i∈I ′ andP ′′ = {pi }k∈I ′′ with I = I ′∪ I ′′. Suppose
by way of contradiction that ConvP ′∩ConvP ′′ contains a point p . Then we can write
p as two convex combinations

∑

i∈I ′ αi pi and
∑

i∈I ′′ αi pi with
∑

i∈I ′ αi =
∑

i∈I ′′ αi = 1.
It follows that
∑

i∈I ′ αi pi −
∑

i∈I ′′ αi pi = 0. This provides an affine dependency between
the points ofP in contradiction with the general position assumption.

Theorem 1.4 (Radon, 1921). Any set of d +2 points in Rd admits a Radon partition.
Moreover, if the d +2 points are in general position any two of them are in the same part
if and only if they are separated by the hyperplane spanned by the remaining d points.
In particular, the Radon partition is unique.

PROOF. Any d +2 points, sayP = {p1, p2, . . . , pd+2}, must be affinely dependent in
Rd . We can thus find real numbers α1,α2, . . . ,αd+2, not all zero, such that

∑d+2
i=1 αi = 0

and
∑d+2

i=1 αi pi = 0. Let I+ := {i ∈ [d + 2] | αi ≥ 0} and I− := {i ∈ [d + 2] | αi < 0}.
Then,
∑

I+
αi =
∑

I−
−αi and denoting the common sum by A we derive the two convex

combinations
∑

I+
(αi/A)pi =
∑

I−
(−αi/A)pi . It follows thatP = {pi }i∈I+ ∪ {pi }i∈I− is a

Radon partition of {pi }i∈[d+2].
Suppose thatP is in general position and consider a Radon partitionP =P ′∪P ′′.

Let p , q ∈P and let H be the affine hull of the remaining pointsP \{p , q }. By general
position, H is a hyperplane that does not contain p nor q . By Lemma 1.3 applied to
P \{p , q } in H , the convex hulls Conv (P ′ \{p , q }) and Conv (P ′′ \{p , q }) are disjoint.
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If p and q are in a same part, then they must be separated by H . Otherwise, ConvP ′
and ConvP ′′ would also be disjoint, contradicting thatP ′ ∪P ′′ is a Radon partition.
Conversely, if p ∈ P ′ and q ∈ P ′′, then they must lie on the same side of H since
otherwise ConvP ′ and ConvP ′′ would be disjoint, again contradicting thatP ′∪P ′′
is a Radon partition.

Corollary 1.5. Let P be a set of d + 2 points in Rd , not all on a same hyperplane.
There exists a hyperplane H that contains d of the points inP and such that the two
remaining points are on the same side of H , i.e. contained in the same component of
Rd \H .

PROOF. By induction on the dimension d . The base case d = 1 is trivial and left
to the reader. If d > 1, first suppose that P is in general position. By the previous
theorem,P has a (unique) Radon partition. Choose one point in each part and take
for H the affine hull of the remaining points. Then H has the required properties by
the same previous theorem.

IfP is not in general position, there must be a hyperplane K that contains a subset
Q of d +1 points ofP . Let p be the remaining point inP \Q. Note that the points
in Q cannot lie on a same (d − 1)-plane. For otherwise, P would be contained in
a hyperplane. By induction applied to Q in K , there is a (d − 1)-plane L in K that
contains d −1 of the points inQ such that the two remaining points ofQ are on the
same side of L . Taking for H the affine hull of L ∪{p}, we obtain a hyperplane with
the required properties.

1.3 From chirotopes to oriented matroids

LetP = {p1, . . . , pn} be a set of n points in Rd . Recall that its chirotope χ returns for
every (d +1)-tuple I ∈ [n ]d+1 the orientation χ(I ) ∈ {−1, 0, 1} of the d -simplex spanned
by the vertices ofP indexed by I . The fact thatP is a subset of a d dimensional affine
space imposes some relations between the signs of its chirotope.

Theorem 1.6. The chirotope χ of a set of n points in Rd is alternating and satisfies the
following conditions.

• C-GP: For all I = (i0, . . . , id+1) ∈
� [n ]

d+2

�

and J ∈
�[n ]

d

�

the set of signs

{(−1)sχ(I − is )χ(J + is )}s=0,...,d+1

either contains {−1, 1}, or is reduced to {0}.

• C-R: For all I = (i0, . . . , id+1) ∈
� [n ]

d+2

�

the set of signs

{(−1)sχ(I − is )}s=0,...,d+1

either contains {−1, 1}, or is reduced to {0}.
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PROOF. Let P = {p1, . . . , pn} be a set of n points in Rd . The definition of their
chirotope as the sign of a determinant shows that it is indeed alternating. Put vi =
�

1
pi

�

∈Rd+1 and let V = (v1, . . . , vn ). From the very definitions we see that the chirotope

χ ofP coincides with the signs of the homogeneous Plücker coordinates (mK )K ∈( [n ]d+1)
of V :

∀K ∈
�

[n ]
d +1

�

:χ(K ) = sign(mK )

The Grassman-Plücker relations (2) in Theorem 1.1 implies that either all terms in
∑d+1

s=0 (−1)s mI−is
m J+is

are zero or two terms are non-zero with opposite signs. Condi-
tion C-GP follows.

For Condition C-R, we first remark that whenPI = {pi0
, . . . , pid+1

} is contained in a
hyperplane, then the chirotope cancels on all (d +1)-tuples of indices in I and thus
satisfies C-R. Otherwise, we may apply Corollary 1.5 to find two points pi j

, pik
inPI

such that

det(vi j
, vi0

, . . . ,cvi j
, . . . ,cvik

, . . . , vid+1
) = det(vik

, vi0
, . . . ,cvi j

, . . . ,cvik
, . . . , vid+1

) (3)

and this quantity is nonzero. By the alternating property of the determinant we have

det(vi j
, vi0

, . . . ,cvi j
, . . . ,cvik

, . . . , vid+1
) = (−1) j det(vi0

, . . . , vi j
, . . . ,cvik

, . . . , vid+1
)

and

det(vik
, vi0

, . . . ,cvi j
, . . . ,cvik

, . . . , vid+1
) = (−1)k−1 det(vi0

, . . . ,cvi j
, . . . , vik

, . . . , vid+1
)

reporting in (3), we get that

(−1) j det(vi0
, . . . , vi j

, . . . ,cvik
, . . . , vid+1

) =−(−1)k det(vi0
, . . . ,cvi j

, . . . , vik
, . . . , vy id+1)

It ensues that (−1) jχ(I−i j ) and (−1)kχ(I−ik )have opposite signs and are both nonzero,
so that C-R holds in all cases.

The pair ([n ],χ), where χ : [n ]d+1 → {−1,0,1} is an alternating map satisfying the
condition of Theorem 1.6, is called an affine oriented matroid of rank d +1. χ is the
chirotope of this oriented matroid. Any set of points in Rd whose chirotope coincides
with χ is a realization of χ .

2 Linear embeddings and immersions

Recall that a linear mapping of a simplicial complex K into Rd is entirely determined
by the image of the vertices of K . It is an embedding if it induces an injective map
|K | ,→Rd . For an immersion we only require that this map is locally injective, which
amounts to ask that the restriction of the map to the star of each vertex is injective. Here,
the star of a vertex of K is the subcomplex comprising all the simplices containing
that vertex and all their faces.
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Lemma 2.1. A linear map f : K → Rd is an embedding if and only if every pair of
disjoint simplices in K is sent to disjoint simplices inRd . It is an immersion if and only
if the previous condition holds locally, i.e., f sends every pair of disjoint simplices in the
star of a vertex to disjoint simplices in Rd .

PROOF. The conditions in the lemma are trivially necessary. Suppose that the
condition for f to be an embedding holds. We first claim that the restriction of f to
each simplex [v0, . . . , vk ] ∈ K is injective. Otherwise, f (v0), . . . , f (vk )must span a flat
(affine subspace) of dimension at most k −1. By Radon’s theorem 1.4 we can partition
the f (vi ) in two subsets whose convex hulls intersect. The corresponding subsets of
vi define two disjoint faces of [v0, . . . , vk ]whose images have a common intersection.
This is however in contradiction with the embedding condition in the lemma.

Now, by way of contradiction, consider two points x ≠ y in |K | such that f (x ) =
f (y ). Letσ,τ ∈ K be the supporting simplices of x and y , respectively. By the previous
claim and the embedding condition,σ and τmust have a common face different from
both σ and τ. Let {ui }i∈I be the vertices of that face, and let {v j } j∈J and {wk}k∈K be
the remaining vertices ofσ and τ, respectively. We have x =

∑

I αi ui +
∑

J β j v j and
y =
∑

I α
′
i ui+
∑

K γk wk for some positive coefficientsαi ,β j ,α′i ,γk with
∑

I αi+
∑

J β j =
∑

I α
′
i +
∑

K γk = 1. Set I+ = {i ∈ I |αi >α
′
i } and I− = {i ∈ I |αi <α

′
i }. We deduce from

f (x ) = f (y ) that
∑

I+
(αi − α′i ) f (ui ) +

∑

J β j f (v j ) =
∑

I−
(α′i − αi ) f (ui ) +

∑

K γk f (wk ).
Remarking that

∑

I+
(αi −α′i ) +
∑

J β j =
∑

I−
(α′i −αi ) +
∑

K γk and denoting by A the
common positive sum, we obtain after dividing by A two convex combinations of
{ui }i∈I+∪{v j } j∈J on one side and of {ui }i∈I−∪{wk}k∈K on the other side whose image by
f coincide. This again contradicts the embedding condition. It follows that the linear
extension of f is indeed injective. The second part of the lemma is proved similarly,
working separately in the star of each vertex.

Lemma 2.2. If a simplicial complex K has a linear embedding into Rd , then it has a
linear embedding sending the vertices to a pointset in general position inRd . The same
holds, replacing embedding by immersion. Moreover, one may enforce that the image
vertices have rational coordinates.

PROOF. By the previous lemma, being an embedding or an immersion is ensured by
a finite set of open conditions, namely the existence of a separating hyperplane for the
images of pairs of disjoint simplices. It ensues that any sufficiently small perturbation
of the vertex images preserves the property of being an embedding or an immersion.
In particular, one may require that the image vertices are in general position and that
all their coordinates are rational.

2.1 A certificate of non-embeddability

Suppose that a simplicial complex K has a linear embedding f : K → Rd . Let V =
{vi }i∈I be the vertices of K . By Lemma 2.2, we can assume that f (V ) is in general
position. In other words, the chirotope χ : I d+1→{−1, 0, 1} of f (V ) does not cancel on
�

I
d+1

�

. An oriented matroid with such a chirotope is said uniform. We shall also say
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that the chirotope itself is uniform. Lemma 2.1 provides a simple criterion for f to
be an embedding. This criterion turns out to be encoded in the chirotope of f (V ) as
stated in the next Corollary 2.4.

Lemma 2.3. Letσ,τ be two intersecting simplices in Rd such that dimσ+dimτ> d .
Then, we can find a face ofσ and a face of τ that intersect and whose dimensions add
up to exactly d .

PROOF. We first make two simple observations.

1. Let H be a flat intersecting a set S in a Euclidean space. Then, the boundary
points of H ∩S in H (it is all of H ∩S if its interior in H is empty) are contained
in the boundary of S .

2. If two sets intersect in a Euclidean space, then one of the two intersects the
boundary of the other one.

Let k = dimσ and ℓ = dimτ. We prove the lemma by induction on k + ℓ. Denote
by H the intersection of the affine hulls of σ and τ. Then, σ∩H and τ∩H are two
intersecting convexes in H . If one of them, sayσ∩H , has empty interior in H , then
by observation (1) applied in the affine hull ofσ, it is included in the boundary ofσ.
It follows that a proper faceσ′ ofσ intersects τ. Replacingσ′ by a larger face ofσ if
necessary, we may assume that dimσ+ ℓ > dimσ′+ ℓ ≥ d . We can thus invoke the
induction to conclude. If bothσ∩H andτ∩H have nonempty interior in H , then their
intersection contains a boundary point of one of them, sayσ∩H , by observation (2). By
observation (1) this boundary point is also in the boundary ofσ and we may conclude
as in the previous case.

Corollary 2.4. Let K be a simplicial complex of dimension at most d with vertex set
[n ]. Consider a map f : [n ]→Rd such that f ([n ]) is in general position and denote its
chirotope by χ : [n ]d+1→{−1, 0, 1}. Then f linearly extends to an embedding f : |K | →
Rd if and only if the following condition is satisfied.

• C-E: for all I ∈
� [n ]

d+2

�

, the subsets

I+ := {i ∈ I | (−1)iχ(I − i )}= 1 and I− := {i ∈ I | (−1)iχ(I − i ) =−1}

are not the vertex sets of a pair of simplices in K .

A similar condition C-I characterizes immersions, where we only ask that I +, I − are not
the vertex sets of a pair of simplices in the star of some vertex in K .

PROOF. From Radon’s theorem 1.4 and looking at the proof of Condition C-R in
Theorem 1.6, it is easily seen that f (I+)U f (I−) defines the unique Radon partition
of f (I ). In particular, Conv f (I+) and Conv f (I−) intersect. Condition C-E is thus
necessary for the extension of f to be an embedding. Conversely, assume that C-E
holds. Consider two disjoint simplicesσ,τ ∈ K . If dimσ+dimτ< d then f (σ) and
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f (τ) are disjoint by the general position hypothesis. If dimσ + dimτ ≥ d we also
claim that f (σ) and f (τ) are disjoint. Otherwise, by Lemma 2.3 we can assume that
dimσ+dimτ= d . Let I be the concatenation of the vertices ofσ andτ. Then, I ∈

� [n ]
d+2

�

and the uniqueness of the Radon partition for f (I ) implies that {I+, I−}= {σ,τ}. This
would however be in contradiction with condition C-E. It follows that every pair of
disjoint simplices in K is sent by f to disjoint simplices in R d . Lemma 2.1 implies
that f indeed defines an embedding. A similar proof holds for Condition C-I on
immersions.

The previous theorem, together with Lemma 2.2 and Theorem 1.6 have the following
consequence. If K has a linear embedding inRd , then there should exist a uniform
chirotope admissible for the embedding of K , i.e., satisfying conditions C-GP, C-
R and C-E. The existence of an admissible chirotope is purely combinatorial and
only depends on d and K . It can thus be checked by a computer. If no admissible
chirotope is found then we can claim that K has no linear embedding inRd . A brute
force algorithm would try all maps

� [n ]
d+1

�

→ {−1,1} to see if one satisfies conditions

C-GP, C-R and C-E. The number of possible maps, 2(
n

d+1), is already far too large, not to
mention the tests for conditions C-GP, C-R and C-E, to be tractable in practice, except
for very small complexes.

2.2 Linear embedding of surfaces

A finite simplicial surface is a simplicial complex S whose carrier |S | is a compact
two dimensional manifold. Equivalently, every simplex of S should be a face of a
triangle in |S | and every edge should be a face of at most two triangles. One says that S
triangulates |S |, or is a triangulation of |S |. Recall that every simplicial surface embeds
linearly in R5. It follows from their classification that all orientable surfaces can be
obtained from the connected sum of a sphere, possibly with boundary, with a certain
number of tori. In particular, all orientable surfaces have a topological embedding into
R3. In fact, the method of Burago and Zalgaller described in the first lecture shows that
all orientable surfaces have a PL embedding inR3. The answer becomes less trivial if
one asks for the linear embedding intoR3 of a specific triangulation of a surface. Until
a counterexample was found in 2000, it was not known whether all simplicial surfaces
could be linearly embedded in 3-space. Here are some known facts.

• It follows from a celebrated theorem of Steinitz (1922) that all triangulations of
a sphere have a linear embedding into R3. In fact, each such triangulation is
the boundary complex of a convex polyhedron in R3. See [Zie95, Chap. 4] for a
proof.

• Archdeacon et al. [ABEM07] proved that all triangulations of the torus can be
linearly embedded into R3. In particular, the toroidal triangulation with the
smallest number of vertices, the so-called Möbius torus, has many linear em-
beddings. The 1-skeleton of this triangulation is the complete graph K7 on 7
vertices. The first known linear embedding of the Möbius torus, due to Császár
(1949), is shown Figure 1. Bokowski and Eggert [BE91] have listed all the 72
admissible uniform chirotopes of the Möbius torus (up to an automorphism of
the triangulation) and they were able to exhibit realizations for each of them.
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77 3

3

2 2

4

4

Figure 1: Left, layout of the Möbius torus. Right, Császár’s linear embedding. The
vertex coordinates are, in order :
(3,−3, 0), (−3, 3, 0), (−3,−3, 1), (3, 3, 1), (−1,−2, 3), (1, 2, 3), (0, 0, 15)

• For higher genus, there exists simplicial orientable surfaces without any linear
embedding in R3. All the results in this direction were proved with the help of a
computer to check that some specific triangulation had no admissible chirotope.
For instance, Altshuler et al. [ABS96] proved that a certain simplicial surface of
genus 6 with 12 vertices has no admissible chirotope. Using a more efficient
heuristic to explore the set of chirotopes Schewe [Sch10] proved that none of
the 59 genus 6 triangulations with 12 vertices has an admissible chirotope. He
proved a similar result for a triangulation of genus 5 with one triangle removed.
As a consequence, any triangulation obtained from a connected sum along this
triangle cannot be realized intoR3. Similar nonrealizability results were obtained
only asking for immersions rather than embeddings.

3 Deciding linear embeddability

The preceding approach, based on chirotopes, does not always allow to decide when
a simplicial complex K is linearly embeddable in some Ed . Even if K has an admis-
sible chirotope, we still have to exhibit an actual embedding, or prove that no such
embedding exists in order to conclude. The conditions for this existence happens
to be dictated by a set of polynomials inequalities. Indeed, assuming that K has an
admissible chirotope χ all what we need to find is a set of points in Ed , one for each
vertex of K , such that the corresponding chirotope is equal to χ . Now, the chirotope
of the set of points is given by sign conditions on determinants (see (1)) which are
polynomials in the coordinates of the points.

In fact, it is not necessary to know in advance an admissible chirotope to express
that K has a linear embedding. By Lemma 2.1, it is equivalent to look for a set of
points {p1, p2, . . . , pn}, corresponding to the vertices i ∈ [n ] of K , such that every pair
of disjoint simplices ([i0, . . . , ik ], [ j0, . . . , jℓ]) in K is sent to non-intersecting simplices
in Ed . This condition can be rephrased as the existence of a hyperplane separating



3.1 Turing machines and complexity 10

[pi0
, . . . , pik

] and [pj0
, . . . , pjℓ]. In other words, there should exist coefficients c0, . . . , cd

such that the hyperplane equation c0+
∑d

i=1 ci xi evaluates positively on pi0
, . . . , pik

and
negatively on pj0

, . . . , pjℓ . Hence, by introducing new variables ci , we are again reduced
to the satisfiability of a set of polynomials inequalities.

A subset of Rd defined by polynomials inequalities is said real semi-algebraic.
Deciding linear embeddability thus reduces to decide whether a real semi-algebraic
set is nonempty. Decision problems that reduce (in a sense to be defined) to the
(non)vacuity of a real semi-algebraic1 set are known as decision problems for the
existential theory of the reals. The existential theory of the reals thus defines a com-
plexity class that turns out to lie somewhere between the classes NP and PSPACE. In
particular, the existential theory of the reals is decidable. In order to make sense out of
these claims we need to recall some basic definitions from the theory of computation.

3.1 Turing machines and complexity

This section is intended to be a crash introduction to computational complexity. The
following notes are greatly inspired by Avi Widgerson [Wig06].

3.1.1 Turing machines

The most popular model of computation was introduced by Alan Turing in 1936. It
was proved equivalent to other notions of computation such as recursive functions
or λ-calculus. Formally, a Turing machine is a triple (A ,Q,T ), whereA is a finite
alphabet including a special blank character denoted by ;,Q is a finite set of states,
and2 T ⊂A ×Q×A ×Q×{R , L} is a transition table specifying how the machine
operates on configurations. Those are words of the form uq v ∈A ∗×Q×A ∗, where
A ∗ denotes the set of words (i.e., finite sequences) overA . Intuitively, the machine
can be represented by a linear tape composed of a bi-infinite sequence of cells that
each contains one alphabet symbol, and by a read/write head pointing to one cell and
containing the machine state. Configuration uq v then corresponds to a tape marked
with the word u v and otherwise with blanks and whose read/write head points to
the first letter in v (the empty word is interpreted as a blank). Transition a q b p D ∈T
applies to any configuration uq v such that a is the first letter in v . It transforms uq v
replacing a with b , the state q by p , and moves the head one step to the left or right
according to whether D equals L or R , respectively.

c o pm u t e r0 0

q
c o mm u t e r0 0

q'

Figure 2: Illustration of the transition pqmq ′R applied to configuration comqputer on
a Turing machine operating on the Latin alphabet.

A Turing machine is deterministic if at most one transition applies to a given con-
figuration: a q b p D ∈ T and a q b ′p ′D ′ ∈ T implies b ′ = b , p ′ = p and D ′ =D . The

1Here, we are only interested in systems of polynomials with integer (equivalently, rational) coeffi-
cients.

2In these notes, we use the symbol ⊂ to indicate the subset relation, not necessarily proper.
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machine is halting in a given configuration when no transition applies. Usually, a
Turing machine has two special halting states interpreted as accepting and rejecting.
As opposed to a deterministic machine, a nondeterministic Turing machine may lead
to several computations starting from a same configuration.

3.1.2 Complexity classes

In computer science a decision problem refers to a subset of words over a fixed
alphabetA . Words in the subset are the YES instances of the problem. Intuitively,
the YES instances correspond to the encoding of objects – such as numbers, graphs,
or Boolean formulas – satisfying a certain property. For instance, one may consider
the problem of primality testing where the YES instances are the binary encoding of
prime integers over the alphabetA = {0, 1}. In full generality, a decision problem can
be any subset I ⊂A ∗. Such a subset is also called a language. A Turing machine is
said to solve or decide3 problem I if given any word w ∈ A ∗ as input, i.e., starting
with a configuration of the form q0w , where q0 is a chosen initial state, it halts in
the accepting state whenever w ∈ I and halts in the rejecting state otherwise. An
algorithm for problem I is just another name for a Turing machine solving I . The time
complexity of the computation on input w is the number of transitions needed to
reach a halting state. The space complexity is the maximum length of a configuration
during the computation.

Polynomial and exponential classes. An algorithm has polynomial time complexity
if for every n ∈N and every input of length n the computation on this input has time
complexity at most p (n ), where p is a polynomial that only depends on the algorithm.
The set of problems admitting algorithms of polynomial time complexity is denoted
by P. Replacing p (n ) by 2p (n ) we obtain the class EXP of problems with exponential
time complexity. Analogously, the set of problems solved by Turing machines whose
space complexity is polynomial is denoted by PSPACE. It is believed, but not known,
that EXP ̸⊂PSPACE.

Exercise 3.1. Show that PSPACE⊂ EXP.

The class NP. The acronym NP stands for the class of nondeterministic polynomial
time algorithms. A problem I is in NP if there is a nondeterministic Turing machine
such that (1) given any w ∈ I as input at least one computation leads to an accepting
state in polynomial time and (2) no computation leads to an accepting state whenever
w ̸∈ I . Case (2) leaves the possibility that the machine runs forever, but computa-
tions that take more than polynomial time may be discarded without affecting the
functionality of the machine, so that we can always assume that the computation
takes polynomial time in both cases (1) and (2). However, the two cases are highly
asymmetric since a computation leading to a rejecting state does not say anything
about the input. There is another useful definition of the class NP in terms of efficiently
verifiable certificate. A problem I is in NP if there is a deterministic Turing machine
with polynomial time complexity, the verifier, such that (a) for every w ∈ I there exists

3or, referring to the language terminology, to recognize.
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c ∈A ∗ so that the verifier accepts w c in polynomial time and (b) if w ̸∈ I the veri-
fier rejects w c whichever c we choose. Hence, c acts as a certificate, or efficiently
verifiable proof for being a YES instance.

Theorem 3.2. The two definitions of the class NP by means of nondeterministic ma-
chines or in terms of certificates and deterministic verifiers are equivalent.

PROOF. Suppose that a language I is recognized by a nondeterministic machine
M in polynomial time. An input word w determines a directed rooted tree of compu-
tations where each node corresponds to a configuration of M and the children of a
configuration node correspond to the various transitions that apply to that configura-
tion. The degree of a node is bounded by a constant, namely the size of the transition
table of M . A computation path in this tree is easily encoded as the list ℓ of branching
choices at the nodes along the path. By assumption, ℓ has polynomial size and may
serve as a certificate. We can define a verifier V that takes the concatenation w ℓ (with
some predefined separator) as input and essentially simulates the computation of
M on w guided by ℓ. The successive branching choices in ℓ allow V to maintain the
current configuration of M determined by those choices. The main task of the verifier
is thus to check that each branching choice corresponds to an actual transition of M
that applies to the current configuration. Clearly, V operates in polynomial time and
w ∈ I if and only if we can choose ℓ so that the simulation leads to an accepting state
of M . We have thus proved that I is in NP according to the second definition.

Conversely, suppose that every word in I has a certificate verifiable by a polyno-
mial time Turing machine V . We define a nondeterministic machine M operating in
two stages. In the first stage, M guesses a certificate with polynomial length. In the
second stage, M simulates V deterministically on the input word concatenated with
the guessed certificate. The nondeterminism of M is thus concentrated in the first
stage. It is easily seen that M recognize I as a member of NP in the sense of the first
definition.

Exercise 3.3. Show that NP⊂PSPACE.

3.1.3 Reduction and completeness

The notion of reduction allows to compare the difficulty of different problems. Given
two problems I , J ⊂A ∗, we say that I reduces (in polynomial time) to J , written I ≤ J ,
if there is a function r :A ∗→A ∗, computable by a Turing machine with polynomial
time complexity, such that I = r −1(J ). In other words, r transforms YES and NO
instances of the first problem to, respectively, YES and NO instances of the second
problem4. Hence, I ≤ J and J ∈P implies I ∈P. This is obviously true replacing P by
any other larger complexity class. If I reduces to J and J to K , it is easily seen I reduces
to K . The reduction relation is thus a preorder (i.e., a reflexive and transitive relation).

4This type of reduction is called many-one, or Karp reduction. Polynomial-time Turing reduction,
also known as Cook reduction, is another common notion of reduction, where I reduces to J if I can
be solved in polynomial time by a Turing machine with an oracle for J , meaning that the machine is
allowed to call a subroutine for problem J at anytime during the computation, in constant time for
each call.
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Any problem which is an upper bound for a complexity class C is said C-hard. It is said
C-complete if it furthermore belongs to C. A C-complete problem is thus a hardest
representative in C. It is a priori not clear whether a complexity class has complete
problems.

Exercise 3.4. Show that every non-trivial problem (proper subset ofA ∗) in P is P-
complete.

It turns out that the class NP has complete problems, among which the satisfiability
problem. A Boolean formula is a logical expression over Boolean variables connected
by the usual ∧,∨,¬ operators. A formula is satisfiable if there is an assignment of
its variables that makes the formula evaluate to true. The problem SAT is the set of
satisfiable formulas encoded, say, over the alphabet {0, 1,∧,∨,¬, (, )}.

Theorem 3.5 (Cook’71 - Levin’73). SAT is NP-complete.

PROOF. Any truth assignment of a formula in SAT provides a certificate that is easily
checkable in polynomial time. It follows that SAT ∈NP. It remains to show that every
problem I ∈NP reduces to SAT. Let M = (A ,Q,T ) be a nondeterministic machine
solving I in polynomial time. For every instance w , we need to construct a formula
Φw so that w ∈ I if and only if Φw is satisfiable.

Number the cells of the tape once for all from left to right so that at the initial
step the tape contains w =w1w2 . . . wn with cell 1 containing w1. By assumption on
M , the number of computation steps given w as input is bounded by p (n ) for some
polynomial p , where n := |w | is the length of w . By convention, we consider that M
stays in the same configuration once in a halting state. This way we can assume that
the number of computation steps is exactly p (n ). It follows that the head of M can
only point to a cell with index in the range J := [−p (n ), p (n )]. In particular, cells with
index outside this range must contain the empty symbol. The whole computation is
thus entirely described by the content of the j th cell at the i th step (configuration)
of the computation, with 1 ≤ i ≤ p (n ) and j ∈ J , and the sequence of p (n ) states
and head positions during the computation. In accordance with this description, we
introduce Boolean variables Ci , j ,s ,Qi ,q , Hi , j with 1≤ i ≤ p (n ), j ∈ J , s ∈A and q ∈Q.
The variable Ci , j ,s is intended to be true whenever the j th cell at the i th step contains
s and false otherwise. Similarly, Qi ,q and Hi , j are intended to be true exactly when M
is in state q at step i with the head pointing to the j th cell.

We next consider the following Boolean formulas. We recall that A =⇒ B is a
shorthand for ¬A ∨B .

• φi , j =
∨

s∈A
(Ci , j ,s ∧ (
∧

t ̸=s

¬Ci , j ,t )) expresses that the j th cell at the i th step takes one

and only one value.

• φi =
�
∨

q∈Q
(Qi ,q ∧ (
∧

r ̸=q

¬Qi ,r ))
�

∧
�
∨

j∈J

(Hi , j ∧ (
∧

k ̸= j

¬Hi ,k ))
�

expresses that the state and

head position each take exactly one value at the i th step.

• φb =
∧

1≤ j≤n

C1, j ,w j
∧
∧

j ̸∈[1,n ]

C1, j ,;∧Q1,q0
∧H1,1 expresses that the initial tape contains

the input w and that M is in the initial state q0 with the head pointing to the
first symbol of w .
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• φe =Qp (n ),qa
, where qa is the accepting state, expresses that M accepts w .

• ψi =
∧

j∈J
s ̸=t

�

(Ci , j ,s ∧Ci+1, j ,t ) =⇒ Hi , j

�

expresses that only the cell pointed by the

head may change from step i to i +1.

• ψi , j ,q ,s = (Qi ,q ∧Hi , j ∧Ci , j ,s ) =⇒
∨

s q t r D∈T
(Qi+1,r ∧Hi+1, j+D ∧Ci+1, j ,t ) expresses that

when M is in state q at step i with the head pointing to the j th cell containing s ,
only the relevant transitions may apply. Here, j +D is j −1 or j +1 depending
on whether D = L or D =R .

We finally set Φw =
∧

i , j φi , j ∧φb ∧φe ∧
∧

iψi ∧
∧

i , j ,q ,sψi , j ,q ,s . To conclude, it remains
to notice that the description of the formula Φw can be computed in polynomial
time (with respect to n) and that Φw is satisfiable if and only if M recognizes w , i.e.
w ∈ I .

3.2 Existential theory of the reals

We are now ready to characterize the complexity of the linear embedding problem.
Given as input an abstract simplicial complex K and a dimension d , the problem is
to decide if K has a linear embedding into Rd . As we shall see this problem can be
reduced in polynomial time to test the non-emptiness of a semi-algebraic set defined
by polynomials with integer coefficients.

Semi-algebraic set. An atomic formula may have one of two forms {p = 0} or {p > 0},
where p is a polynomial in a finite number of variables, with integer coefficients. A
predicate Φ(X1, . . . , Xd ) in the language of fields with integer coefficients is a Boolean
predicate applied to atomic formulas using the free variables X1, . . . , Xd . In other
words,Φ(X1, . . . , Xd ) can be obtained recursively from atomic formulas using the logical
connectors ∧,∨ and ¬. A semi-algebraic set over the integers is any set of the form

{x = (x1, . . . , xd ) ∈Rd |Φ(x )}

with Φ a predicate as above. An existential formula is a proposition of the form

∃x ∈Rd |Φ(x )

Deciding the falsity or truth of an existential formula is thus the same as deciding if a
semi-algebraic set is empty or not. The set of problems that reduces in polynomial
time to deciding the status of existential formulas has been gathered under the name
of existential theory of the reals. This complexity class is denoted by ∃R.

Lemma 3.6. NP⊂ ∃R.

PROOF. By Theorem 3.5 of Cook and Levin, it is enough to prove that SAT reduces
to ∃R. Let Φ(X ) be a Boolean formula with variables X = (X1, . . . , Xd ). Using the dis-
tributivity rules of negation over disjunction and conjunction we can assume that the
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negations in Φmay only apply to the atomic variables X i . Let Y = (Y1, . . . , Yd ) be free
variables, we recursively define a polynomial PΦ(Y ) using the formulas: PX i

(Y ) = Yi ,
P¬X i
(Y ) = 1−Yi , PΦ1∧Φ2

= PΦ1
(Y )×PΦ2

(Y ) and PΦ1∨Φ2
= PΦ1

(Y ) +PΦ2
(Y ). We now consider

the existential formula defined by the conjunction of the following predicates.

• Y 2
i −Yi = 0, i = 1 . . . d .

• PΦ(Y )> 0.

Noting that Y 2
i −Yi = 0 implies Yi ∈ {0, 1}, it is easily checked that Φ(X ) can be satisfied

if and only if the above existential formula defines a nonempty semi-algebraic set.
Moreover, a description of the existential formula can be obtained in time proportional
to the length of the description of Φ, thus providing the required reduction.

A much more challenging task is to provide an upper bound on the complexity of
∃R. The first approach to decide the vacuity of a system of polynomials (in)equations
used the cylindrical decomposition of Collins (1975). This cylindrical decomposition
includes a decomposition of Rk , where k is the number of variables in the system,
into semi-algebraic cells such that each polynomial in the system has a constant sign
−,0 or + over each cell. Hence, the system has at least one solution if we can find
one cell in the decomposition such that the sign of each polynomial agrees with the
corresponding (in)equality in the system. The best known computation of such an
adapted decomposition takes time O (s d 2k )where s is the number of polynomials in
the system and d is their maximal degree. The cylindrical decomposition approach
thus leads to a doubly exponential time algorithm. It was eventually shown that ∃R
could be solved using polynomial space only [Can88, Ren88].

Theorem 3.7 (Canny’88). ∃R⊂PSPACE

The proof of this result is far beyond the purpose of this lecture. Describing all
the details takes a whole thick book [BPR06]. There are excellent surveys [Bas14,
RRSED00] that can serve as introductory lectures. An important step is to decide the
(non)emptiness of a real algebraic set defined by a systemS of polynomial equations.
The main idea is to augment S with other polynomial conditions so that the new
system has only a finite number of solutions, a so-called zero-dimensional system,
with at least one solution in each (semi-algebraically) connected component defined
by S . Those solutions can even be returned implicitly using rational univariate
representations. This is done by searching for the critical points of a given functional
(e.g. the squared distance to a fixed point) over the algebraic set. For this method to
work it is required that the critical points are non-singular and that the components are
bounded. One way to enforce these conditions is to use symbolic perturbations. They
are obtained by introducing new variables playing the role of infinitesimals, replacing
equations of the form P = 0 by P = ϵ, for ϵ an infinitesimal. Other modifications may
be introduced to take care of the unbounded components leading to a new system
of polynomial equations whose coefficients are now polynomials in the infitesimals.
After solving the modified system, it remains to substitute zero for the infinitesimals to
obtain real solutions. A huge amount of techniques from real algebraic geometry are
necessary, such as the use of resultants, root counting, Gröbner basis computations,
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etc. In the end, it can be proved that the emptiness of a semi-algebraic set defined
by a system of polynomial (in)equations can be decided using polynomial space, in
terms of the size of the encoding of the system. Only a few implementations seems to
exist and are hardly able to deal with more than a dozen variables with polynomials of
relatively low degree.

Exercise 3.8. Show that the emptiness of a semi-algebraic set defined by polynomial
(in)equations can be reduced to the emptiness of an algebraic set defined by poly-
nomial equations. Show that you can furthermore impose that the algebraic set is
defined by a single polynomial equation.

3.2.1 Linear embeddability belongs to ∃R

In the introduction to Section 3 we already observed that the embeddability of a
simplicial complex K could be reduced to the satisfiability of a set of polynomial
inequalities. We still need to check that this reduction takes polynomial time. Recall
that we have to encode the conditions that pairs of disjoint simplices are sent to non-
intersecting simplices in Rd . The transcription into polynomials of those conditions
for each pair of simplices just claims the existence of a separating hyperplane and
clearly takes polynomial time. There still remains the potential problem that the
number of simplices, hence the number of polynomials conditions, is very large
compared to the encoding of K . A reasonable encoding should indeed only records
the maximal simplices of K — those that are not a face of larger simplices — the other
simplices being implicitly encoded as faces of the maximal ones. For instance, if |K |
is an m-dimensional simplex, its total number of faces is 2m+1 while its encoding is
essentially the single set [m +1]. Nonetheless, since m ≤ d is an obvious condition for
embeddability in Rd , we are led to conclude that

Theorem 3.9. The linear embedding problem into Rd is in ∃R for any fixed dimension
d .

The question raised by the potentially large number of polynomial conditions can
be dealt with at the expense of getting larger polynomials. We can indeed replace the
conditions in Lemma 2.1 by a smaller number of conditions. To see this, we first make
a simple observation.

Lemma 3.10. Letσ,τ be two simplices inRd intersecting along a common face. There
exists a hyperplane intersecting each of σ,τ along their common face and otherwise
separating them.

PROOF. Let {ui }i∈I be the vertices of the common face, and let {v j } j∈J and {wℓ}ℓ∈L

be the remaining vertices of σ and τ, respectively. Let uσ,ϵ
i := (1 − ϵ)ui + ϵv j0

for
some fixed j0 ∈ J . Likewise, let uτ,ϵ

i := (1− ϵ)ui + ϵwℓ0
for some ℓ0 ∈ L . For 0 < ϵ < 1,

σϵ :=Conv ({uσ,ϵ
i }i∈I ∪{v j } j∈J ) andτϵ :=Conv ({uτ,ϵ

i }i∈I ∪{wℓ}ℓ∈L ) are disjoint compact
convexes, hence separated by a hyperplane Hϵ defined by a unit normal vector νϵ and
a point uϵ, say between uσ,ϵ

1 and uτ,ϵ
1 . As ϵ tends to zero, νϵ and uϵ converge toward

a vector ν0 and a point u0 defining a hyperplane H0. It is easily seen that H0 has the
required property.



REFERENCES 17

With some abuse of terminology we still call the hyperplane as in Lemma 3.10 a
separating hyperplane for (σ,τ).

Corollary 3.11. The embedding conditions in Lemma 2.1 can be replaced by the fol-
lowing: (1) the vertices of each maximal simplex of K are sent to affinely independent
points in Rd and (2) for every pair of distinct maximal simplices of K , there exists a
separating hyperplane in the sense of the previous lemma.

PROOF. Condition (1) is trivially necessary for any linear embedding. Lemma 3.10
implies that condition (2) is also necessary. Conversely, suppose that a linear map
f : K → Rd satisfies (1) and (2). Let σ,τ be to disjoint simplices of K . σ and τ are
faces of two maximal simplices, sayσ′ and τ′ respectively. On the one hand, ifσ′ =τ′,
condition (1) implies thatσ,τ are sent to disjoint faces of a non-degenerate simplex
inRd . On the other hand, ifσ′ ̸=τ′, condition (2) implies the existence of a separating
hyperplane for (σ′,τ′) providing a separating hyperplane for (σ,τ). In any case,σ and
τ are sent to non-intersecting simplices in Rd , showing that f is an embedding by
Lemma 2.1.

By Corollary 3.11 we just need a number of polynomial conditions that is quadratic
in the number of maximal simplices. Beware, though, that condition (1) is expressed
by the non-cancellation of determinants that may contain up to d ! terms. The poten-
tial benefit of this approach in terms of the number of polynomials should thus be
balanced with the increase in the size of the polynomials.
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