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The purpose of this lecture is to extend the Nash-Kuiper Theorem on C 1 isometric
embeddings of Riemannian surfaces to polyhedral surfaces. These notes are based
on the work of Burago and Zalgaller [BZ95]. As usual, Ed denotes the d -dimensional
Euclidean space.

1.1 Polyhedral surfaces

Here, the objects of interest are polyhedral surfaces which are compact topological
surfaces endowed with a polyhedral metric. Those can be obtained by considering a
set of Euclidean triangles in the plane, gluing their sides according to a partial oriented
pairing. This pairing should be such that each side appears at most once in the pairs
and two sides in a pair should have the same length. The pair orientation specifies
one of the two isometries between its sides. Note that two sides of a same triangle may
well be glued together. The resulting surface is closed, i.e., without boundary, when
each side appears in one pair, i.e., when the pairing is complete.

Exercise 1.1.1. Prove that the above construction always results in a topological surface.
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1.1. Polyhedral surfaces 3

Recall that a simplicial triangulation of a surface is a decomposition into triangles1

such that any two (closed) triangles are either disjoint or intersect along a common
vertex or a common edge.

Exercise 1.1.2. The gluing of triangles may not define a simplicial triangulation of the
resulting surface, for instance when two edges of a same triangle are paired. Assuming
a pairing (each edge belongs to at most one pair) that excludes this case, do you always
get a simplicial triangulation? Show that any gluing of triangles admits a simplicial
subdivision, i.e., that the triangles can be subdivided into a finite union of triangles in
order to get a simplicial triangulation.

The gluing of Euclidean triangles induces an intrinsic metric on the resulting
polyhedral surface: the distance between any two points is the infimum of the lengths
of the paths connecting the two points, where paths are finite concatenations of paths
contained in a single triangle and the length of a path is the sum of the Euclidean
length of these triangle paths.

Exercise 1.1.3. Prove that the intrinsic metric is indeed a metric.

There is an intrinsic definition of polyhedral surfaces that does not assume any
specific triangulation. Formally, a polyhedral metric on a surface is a metric such
that every point has a neighborhood isometric to a neighborhood of the apex of a
Euclidean cone, where we ask that the isometry sends the considered point to the
apex of the cone. In turn, a (2-dimensional) Euclidean cone is defined by coning a
rectifiable simple (non self-intersecting) curve on the unit sphere inE3 from the origin.
The length of this curve is the total angle of the cone; it determines the geometry of
the cone up to a length preserving map. A point whose conic neighborhood has total
angle different from 2π is called a singular vertex. Note that in any triangulation of a
polyhedral surface by Euclidean triangles the singular vertices must be vertices of the
triangles.

Exercise 1.1.4. Show that the above definitions based on triangles or on conic neigh-
borhoods are indeed equivalent. See [LP15] for a generalisation of this equivalence to
higher dimensional polyhedral spaces.

Let S be a polyhedral surface. A map f : S →E3 is said piecewise linear (PL) if S
admits a triangulation such that the restriction of f to any triangle is linear, i.e., it
preserves barycentric coordinates. f is piecewise distance preserving if S admits a
triangulation such that the restriction of f to any triangle is distance preserving, i.e.,
| f (x )− f (y )|= dS (x , y ) for any x , y in a same triangle. Here, | · | is the Euclidean norm
and dS is the metric on S . In particular, f must be PL.

1In general, one call a simplicial triangulation the homeomorphic image of the carrier of an abstract
simplicial complex. A well-known result of Radó [Rad25, DM68] states that every topological surface
has a simplicial triangulation. In these notes we only consider geometric triangulations composed of
Euclidean triangles.
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1.2 The PL isometric embedding theorem of Burago and
Zalgaller

A map f : S → E3 is C -Lipschitz if | f (x ) − f (y )| ≤ C dS (x , y ) for all x , y ∈ S . A C -
Lipschitz map is said contracting, or short when C < 1, and nonexpanding when
C = 1.

As a topological surface, a polyhedral surface admits a unique smooth structure
compatible with the conic charts at the non-singular points (the local isometries are
used as coordinate maps). We can thus speak of a C 2-immersion of S . Burago and
Zalgaller [BZ95] proved a PL version of the Nash-Kuiper theorem on C 1 isometric
immersions. We recall that f : X → Y is a (topological) embedding if f : X → f (X ) is a
homeomorphism, where f (X )⊂ Y is given the topology induced by Y . f is an immer-
sion if it is a local embedding, i.e., every x ∈ X has a neighborhood the restriction to
which f is an embedding. Note that an immersion may have “self-intersections” as
opposed to an embedding. A piecewise distance preserving embedding is also called
a PL isometric embedding.

Theorem 1.2.1 (Burago and Zalgaller, 1996). Let S be a polyhedral surface. Every
short C 2-immersion of S in E3 can be approximated by a piecewise distance preserving
immersion in E3. The same is true, replacing immersion by embedding.

Here, the approximation by a piecewise distance preserving map means that for
any ϵ > 0 there is such a map whose C 0 distance is less than ϵ. We recall that the C 0

distance of two maps f , g : S →E3 is sups∈S | f (s )− g (s )|.
Remark 1.2.2. This theorem implies that every polyhedral surface has a piecewise
distance preserving immersion in 3-space. In fact, every orientable surface and every
surface with non-empty boundary is isometric to a PL surface embedded inE3! Indeed,
it is well-known that every (compact) closed non-orientable surface can be smoothly
immersed in 3-space while all other surfaces embeds smoothly in 3-space. One can
compose such an immersion or embedding with a homothety whose ratio is small
enough to get a short map. Applying the above theorem to this map allows to conclude.

Remark 1.2.3. The approximation result in the theorem tells that we can approximately
prescribe the shape of the immersion as long as it is short. For instance, we can find a
PL isometric embedding of a unit cube as close as desired to a cube of half size. An
even more surprising consequence is that the unit cube – and in fact any polyhedron
in E3 – has another PL isometric embedding enclosing a larger volume! See [Pak06] for
the general case. The case of a cube has actually a simple solution [Pak08] independent
of the theorem of Burago and Zalgaller.

1.3 The basic case

Before dealing with general polyhedral surfaces we consider the simplest case of a
surface with boundary reduced to a single triangle T and embedded intoE3 by a linear
short map T → t . In other words, we ask that
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• (1) the sides of the image triangle t are shorter than the corresponding ones in
T .

We also assume that

• (2) T and t are acute triangles, meaning that the angle at each vertex is less than
the right angle. Equivalently, the circumcenter of each triangle is interior to the
triangle.

• (3) The distance of the circumcenter Ω to each side of T is larger than the cor-
responding distance in t , i.e., than the distance of its circumcenter ω to the
corresponding side.

Consider one of the two right prisms with base t in E3. Let us call it the prism above
t . Let PQ be a side of T and let p q be the corresponding side in t . Embed PQ
isometrically as an equilateral broken line p mq inside the lateral face of the prism
above p q and embed the two other sides of T in a similar manner in the corresponding
lateral faces. See the figure below.

Ω

P

Q

p

q

m

T

ω
t

Lemma 1.3.1. The above embedding of the sides of T extends to a PL isometric embed-
ding of T lying inside the prism above t . Moreover, refining this isometric embedding
we can enforce that its C 0 distance to the linear embedding T → t is arbitrarily small.

PROOF. Letω′ the point vertically aboveω such that |pω′|= |PΩ|. Refer to Figure 1.2
for an illustration. Note thatω′ is well-defined since by the assumptions (1) and (2)
the circumradius |PΩ| of T is larger than the circumradius |pω| of t . Subdivide T into
three subtriangles by cutting along the circumradii joining Ω to the vertices of T .

Ω

P

Q

T
M
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We show below how to fold the subtriangle [PQΩ] in the prism above t so that its
boundary fits the broken line p mqω′p . Similar constructions apply to the other two
subtriangles so that putting together the three constructions we obtain the desired
embedding of T . The second part of the lemma will follow after subdividing both
T and t uniformly into sufficiently small triangles as on Figure 1.1. We can indeed

Figure 1.1: Uniform subdivision of a triangle. The vertices of the subdivision have
barycentric coordinates (i/n , j /n , k/n ) for i , j , k ∈N and i + j +k = n for some fixed
n .

apply the same three constructions to each pair of corresponding small triangles. The
deviation of the whole construction from the base triangle t can be made arbitrarily
small by using finer and finer subdivisions.

Let M be the midpoint of PQ . Fold [PQΩ] along its height MΩ so as to apply
its side PQ along p mq . The folding segment MΩ now coincides with a horizontal
segment mω′′. See Figure 1.2.

p

q

m

ω
t
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ω′′

Π1

a b c d

c

Π2

Figure 1.2: a: fold of [PQΩ] along its height MΩ and the two planes Π1 and Π2. b: the
plane Π1. c: the plane Π2 and reflection in Π1. d: reflection in Π2.

By the above assumption (3) the segment mω′′ cuts ωω′ at some point c . Let
Π1 and Π2 be two planes in the sheaf generated by the line p q so that they cut m c
in the order m ,Π2 ∩m c ,Π1 ∩m c , c . We further fold [PQΩ] by reflecting across Π1

its part lying below Π1 (i.e., in the halfspace bounded by Π1 and containingω′′). We
then reflect along Π2 the part above Π2 and continue this way, alternating between
reflections acrossΠ1 andΠ2. By a suitable choice ofΠ1 andΠ2 we can ensure that after
a finite and even number of reflectionsω′′ is sent toω′. The resulting folding of [PQΩ]
defines an isometric embedding bounded by p mqω′p as desired.
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Exercise 1.3.2. Propose an explicit folding of [PQΩ] as in the above proof, possibly
varying the reflection planes Π1 and Π2. Can you estimate the required number of
reflections in your algorithm as a function of some appropriate geometric quantities?

This construction allows for some flexibility. The prism wall above p q may be slightly
tilted around p q as long as mω′′ crossesωω′. The same is true for the other two walls.
The maximum angle of rotation depends on the maximum length ratio between the
edges of T and the corresponding edges of t , and on the minimum and maximum
angles at the vertices of T . It also depends on the degree of similarity between T and
t , as the above condition (3) is trivially satisfied when T and t are similar. Playing with
those parameters one can get uniform conditions for applying this construction to a
collection of pairs (Ti , ti ).

1.4 Proof of the Burago and Zalgaller theorem

We shall assume once for all that the surface S in Theorem 1.2.1 is orientable and
without boundary. The non-orientable or boundary cases need non-trivial special
treatments and we refer to the original paper [BZ95] for the details. Denote by f : S →
E3 the short C 2 map in Theorem 1.2.1. The strategy for the proof is the following. In
view of the construction in the previous section, suppose that S is triangulated so
that each triangle is acute. By applying a uniform subdivision as on Figure 1.1 we
can assume that the largest edge length of this triangulation, call it T , is as small as
desired. Consider the PL approximation F of f with respect to T mapping a triangle
T = [PQ R ] of T to the triangle F (T ) := [ f (P ) f (Q ) f (R )] in E3.

• As f is short, if T is small enough then the pair (T , F (T )) satisfies Condition (1)
in Section 1.3.

• Since f is C 2 and S is compact, adjacent triangles are mapped to triangles having
a dihedral angle uniformly close to π.

Suppose in addition that

• every triangle of T is acute.

• S has no singular vertex, so that its polyhedral metric, say µ, is flat and C∞.

• f is almost conformal, meaning that µ and the pullback metric f ∗〈·, ·〉E3 are
almost proportional at every point. In other words, for any point s ∈ S and every
tangent vectors u , v at s we haveµ(u , v )≈λ2

s 〈d fs .u , d fs .v 〉E3 for some conformal
factor λs > 0 independent of u , v .

Then every small enough triangle T of T is approximately similar to its linear image
F (T ). We are thus in the uniform conditions evoked at the end of Section 1.3 and we
can apply the tilted isometric embedding construction to each triangle T above F (T )
as described there. Since S is orientable we can orient all its triangles consistently
so that the tilted embedding of an edge coincides for its two incident triangles. The
individual triangle embeddings thus fit together to form a PL isometric immersion.
This would conclude the proof of Theorem 1.2.1 noting that when f is an embedding, a
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sufficiently fine subdivision of an acute triangulation of S ensures that the embeddings
of the individual triangles do not intersect, leading to a PL embedding as desired. The
difficulty of the proof of Theorem 1.2.1 thus resides in removing the above assumptions:

• proving that any polyhedral surface has an acute triangulation,

• dealing with singular vertices on a polyhedral surface, and

• replacing f by an almost conformal map.

Exercise 1.4.1. Prove by simple counting arguments, without the help of the Gauss–Bonnet
theorem, that a closed orientable polyhedral surface without singular vertices is a flat
torus.

The fact that any polyhedral surface has an acute triangulation is of independent
interest and is the subject of the next section. Concerning the conformality of f , we
can invoke the Nash-Kuiper Theorem, or more precisely a simpler construction of
Kuiper [Kui55]. We refer the reader to Kuiper’s original paper (eq. (5.3)) or to the course
on the h-principle in the Master program for a proof of the next result.

Theorem 1.4.2 (Kuiper’55). Any short C 1 immersion (embedding) f : (S ,µ)→E3 of a
surface S, possibly with boundary, endowed with a C 1 metric µ can be approximated
by a C∞ almost isometric immersion (embedding) g : S →E3, i.e., satisfying (1− ϵ)µ<
g ∗〈·, ·〉E3 <µwith ϵ arbitrarily small. Moreover, if f is isometric on the boundary of S
(and short inside S), we can enforce g = f on the boundary.

Thanks to this lemma we can approximate f with an almost isometric immersion2

g which is a fortiori almost conformal. Moreover, replacingµ byαµ, withα< 1, so that
f is still short for αµwe ensure that g is short for µ. It remains to deal with singular
vertices. The singular vertices with total angle smaller or larger than 2π are dealt with
separately. We first introduce certain maps between cones.

The standard conformal map. Let Cϕ denote the Euclidean cone with total angle ϕ.
Fixing a generating line ℓ on Cϕ we get polar coordinates (r,θ ) for a point at distance
r > 0 from the apex, such that the generating line through the point makes an angle
θ ∈ [0,ϕ)with ℓ. The standard conformal map fϕ,ψ,λ : Cϕ→Cψ sends apex to apex and

the point with polar coordinates (r,θ ) to the point with polar coordinates (λr
ψ
ϕ , ψϕθ ),

where λ > 0 is a fixed parameter. This map is conformal (apart from the apex) with

conformal factor λψϕ r
ψ
ϕ −1.

Exercise 1.4.3. Prove that fϕ,ψ,λ is indeed conformal with the claimed conformal factor.

Dealing with singular vertices of total angle smaller than 2π. Let v ∈ S be a singular
vertex with total angle ϕ < 2π. Let Bv,ρ be the (conic) disk with center v and radius
ρ in S . We modify f in Bv,ρ for some small ρ so that its restriction to Bv,ρ′ , for some
ρ′ <ρ, coincides with the standard conformal map fϕ,2π,λ where the image cone C2π

2The C 1 (exact) isometric immersion in the Nash-Kuiper Theorem is obtained as the limit of a
converging sequence of such approximations.
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is identified with the plane tangent to f (v ) with “apex” f (v ) and λ is chosen small
enough so that fϕ,2π,λ is contracting in Bv,ρ′ . We further extend fϕ,2π,λ inside Bv,ρ so
that the overall modification of f remains short and C 2.

Dealing with singular vertices of total angle larger than 2π. Let v ∈ S be a singular
vertex with total angle ϕ > 2π. We modify f in Bv,ρ for some small ρ so that for some
ρ′ <ρ:

1. its restriction to Bv,ρ′/2 expressed in polar coordinates is the map (r,θ )→ (r, 2π
ϕ θ )

where we again identify the flat cone C2π with the plane tangent to f (v ). This map
is isometric in the radial direction and uniformly contracting in the orthogonal
direction.

2. its restriction to the annulus Bv,ρ′ \Bv,ρ′/2 is the standard conformal map fϕ,2π,λ

with λ= (ρ′/2)1−
2π
ϕ . This choice of λ implies that the conformal factor of fϕ,2π,λ

is bounded by 2π
ϕ < 1 outside Bv,ρ′/2.

3. its restriction to Bv,ρ \Bv,ρ′ is smooth, short, and connects to f at the boundary
of Bv,ρ in a C 2 manner.

Note that the modified f is not short on the disk Bv,ρ′/2 and is only C 1 at its boundary.
We surround v in S with a regular k -gone Nv (k ) inscribed in a disk of radius ρ′/2,
where k is large and may be fixed later. We triangulate Nv (k ) by coning its boundary
from its center v . We next slightly enlarge Nv (k ) to a neighborhood N ′v =N ′v (k ) to form
a cogged disk obtained by attaching equilateral triangles to the k sides of Nv (k ). The
reason for this enlargement is to allow for the uniform subdivision of the complement
of N ′v . Indeed, this complement needs to be triangulated and possibly subdivided
uniformly, say ℓ times. This subdivision can easily be extended to N ′v by changing
Nv (k ) for Nv (ℓk ), as shown on the figure below.

Replacing Nv (5) by Nv (15) allows to extend the uniform subdivision of the boundary of the
cogged disk N ′v (5).
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Putting the pieces together. In the above local modifications of f , the radii ρ are
chosen small enough so that the disks Bv,ρ are pairwise disjoint and the modified
map, say f1, remains close to f . Let V+, V− be the set of singular vertices of S with total
angle respectively smaller and larger than 2π. Set V = V+ ∪V− for the set of singular
vertices of S . We shall now invoke Theorem 1.4.2 to replace f1 on S \ ∪v∈V Bv,ρ′/2 by
a close immersion f2 which is both almost conformal and short with respect to the
polyhedral metricµ. To this end, we first consider outside the disks Bv,ρ′/2 a contracting
scaling αµ of µ, α< 1 so that f1 is still short for αµ. We next consider the metric µ′ on
S \∪v∈V Bv,ρ′/2 defined by

µ′ =

¨

αµ outside the disks Bv,ρ′

ϖ f ∗1 〈·, ·〉E3 + (1−ϖ)αµ on ∪v∈V Bv,ρ′ \Bv,ρ′/2

whereϖ is a smooth plateau function interpolating between 1 on the boundary of
Bv,ρ′/2 and 0 on the boundary of Bv,ρ′ . Note that f1 is already conformal with respect to
µ on Bv,ρ′ \Bv,ρ′/2 so that µ and µ′ are conformal. Note also that f1 is short with respect
to αµ on Bv,ρ′ \ Bv,ρ′/2 so that f1 remains short with respect to µ′ in the interior of
S \∪v∈V Bv,ρ′/2 while being isometric on its boundary. We can now apply Theorem 1.4.2
toµ′ and f1 on S\∪v∈V Bv,ρ′/2 to obtain an almost isometric immersion f2 approximating
f1. In other words, f ∗2 〈·, ·〉E3 ≈ µ′ and f2 ≈ f1. Moreover f2 and f1 coincide on the
boundary of Bv,ρ′/2. We extend f2 to S by setting f2 = f1 on the disks Bv,ρ′/2. The map f2

is C 2, short and almost conformal with respect to µ except on ∪v∈V−Bv,ρ′/2.
Next, we compute an acute triangulationT of S\∪v∈V−N

′
v as described in Section 1.5

so that T together with the triangulations of the N ′v define an acute triangulation of S .
The triangles in T being in finite number admit a smaller and a larger angle. As noted
at the end of Section 1.3 we can find uniform conditions on the degree of similarity
and on the contraction factor that allow to apply the basic construction of Section 1.3.
Recall that around each v ∈V+ the modified map f2 is a standard conformal map. In
particular its conformal factor tends to zero at v . Moreover, the default of conformality
of f2 outside the Bv,ρ′/2 can be quantified. Hence, we can subdivide T uniformly to
get a sufficiently fine triangulation for which the PL approximation of f2 with respect
to T sends

• adjacent triangles to almost coplanar triangles, and

• each triangle in S \ ∪v∈V−N
′

v to a triangle that is either sufficiently similar or
sufficiently smaller so that the basic construction of Section 1.3 can be applied.

It remains to extend this subdivision to the neighborhoods N ′v as described above. Let
T ′ be the resulting triangulation. We finally apply the basic construction of Section 1.3
to each triangle of T ′ except those in the neighborhoods of the form Nv (ℓk )⊂N ′v , for
v ∈V−. In those neighborhoods we use a simpler construction. The ℓk long isosceles
triangles inside each Nv (ℓk ) are further split along their longest median and linearly
embedded into a radially crimped surface above the plane tangent to f (v ) as shown
on the figure below.
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Beware that the left disk is not flat at its center!

If ℓk is large enough the boundary of Nv (ℓk ) is embedded almost perpendicularly to
the tangent plane at f (v ) and can be glued with the rest of the construction.

We end this section with a picture of a PL isometric embedding of the square flat
torus approximating a short Hopf torus [Pin85]. The basic construction of Section 1.3
has been applied to each triangle of a PL approximation (Figure 1.5, left) of this Hopf
(conformal) torus to obtain the PL isometric embedding of Figure 1.5, right.

Figure 1.5: Left, a short PL embedding of the square fat torus. Right, The resulting
PL isometric embedding of the square flat torus computed by Florent Tallerie. The
triangulation is composed of 170,040 triangles.

1.5 Existence of acute triangulations

An acute triangulation of a polyhedral surface S is a simplicial triangulation such that
every triangle is flat and acute in S . In particular, if S is already triangulated it might be
desirable to subdivide this triangulation into an acute one. The existence of such acute
triangulations and refinements has a long history, starting with Burago and Zalgaller
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in 1960. See [Zam13] for a comprehensive account on the subject. The existence
proof of Burago and Zalgaller (only available in Russian) was recently simplified by
Saraf [Sar09] and by Maheara [Mae11]. Saraf constructs a non-obtuse triangulation
where the angles within the triangles are at most π/2. A non-obtuse triangulation may
thus contain right angle triangles.

Exercise 1.5.1. Check that a triangle can always be subdivided into at most two non-
obtuse triangles and prove that it can always be subdivided into at most 7 acute
triangles.

Theorem 1.5.2 (Saraf’09, Maheara’11). Every triangulation T of a polyhedral surface
can be subdivided into a non-obtuse triangulation. Moreover, we can impose that the
triangles of the subdivision with at least one vertex which is a vertex of T or interior to
an edge of T are acute.

PROOF (SKETCH). Exercise 1.5.1 provides a seemingly short proof by subdividing
each triangle into 7 acute triangles. However, the subdivisions of an edge induced
by the subdivision of the two adjacent triangles have no reason to agree so that the
resulting subdivision might not be simplicial. We thus need a more clever construction.

Let T be a triangulation of a polyhedral surface S . The main argument for the
construction of an acute triangulation is to first cover the edges of T with a set of
non-overlapping disks centered along the edges. Then, inside each triangle t , the
disks covering its edges are completed into a packing, i.e. into a set of touching disks
with disjoint interiors. Connecting the centers of touching disks with line segments we
obtain a contact graph that induces a subdivision of t into polygons. See Figure 1.6.
The packing can be chosen so that every polygon has at most four sides. Moreover,
it is possible to subdivide such polygons into non-obtuse triangles subdividing each
side in two by introducing the tangency point of the disks centered at its endpoints. In
particular, the edges of t will be subdivided exactly at the center and contact points
of the covering disks, thus matching the subdivision induced by the other adjacent
triangle (for a boundary edge there is no matching to check). This provides the required
non-obtuse triangulation of S as in the first part of the lemma.

In details, we let θ be the smallest angle in the triangles of T , and we let h be the
shortest altitude of any triangle of T . Put r = h

9 sin θ
2 . Consider an edge e of length ℓ

in T . We place two disks of radius R := h/3 centered at the endpoints of e and cover
the remaining middle segment with ke := ⌈(ℓ/2−R )/r ⌉ equally spaced disks of radius
re := (ℓ/2−R )/ke . The disks placed at the vertices are said of vertex type, and the other
disks are said of edge type. See Figure 1.6. We easily check that 3r /5≤ re ≤ r . We cover
similarly all the edges of T . It is easily checked that the disks of type vertex and edge
have pairwise disjoint interior.

PROOF. Consider a disk of radius ρ with center c on the middle segment of e = p q and
crossing the angle bisector at p (with angleφ). Reducing ρ if necessary we may assume that
the disk is tangent to the bisector at a point x . The triangle [p x c ] has thus a right angle at x
so that ρ = |c x | = |p c |sin(φ/2) ≥ (h/3+ρ)sin(θ/2) > r . Choosing ρ ≤ r we ensure that the
disk does not intersect the bisector. This is true for all three sides of t , hence none of the disks
intersect.
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Figure 1.6: Upper left: a packing of disks covering the edges. Upper right: the corre-
sponding contact graph. Lower middle: the vertex-disks (dark blue), the edge-disks
(red), and the three types of disks in the circular row: 1 (green), 2 (light blue) and 3
(orange).

Consider a triangle t . The disks covering its edges form a circular row of packed
disks. We partially extend this packing with a second row composed of three types of
disks.

1. for every pair of touching edge-disks we place a disk of the same radius tangent
to the two edge-disks.

2. for every pair of touching disks, one of which a vertex-disk and the other one
an edge-disk, we place a disk tangent to both disks in the pair and to a disk of
type 1. The above choice of R and r is such that the two first types of disks now
form three disjoint sequences of touching disks – one per edge of t .

PROOF. Same proof as above, noting that each disk of type 1 is included in a larger
disk of radius ρ(1+

p
3) centered at the tangent point of two disks on the first row.

3. we finally pack disks of radius at most r tangent to the vertex-disks in order to
connect these three sequences into a single circular sequence of tangent disk.
See Figure 1.6.

The reason for this second row of disks is to enforce that the faces of the contact graph
incident to the edges of t are triangles. We now extend inside t the packing formed by
this row and the disks covering the edges of t .

Claim 1. The second row of disks can be extended towards its interior to form a packing
whose contact graph has faces (excluding the exterior one) with at most four sides.
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The proof, due to Bern et al. [BMR95, lem. 1] is by induction on the number of sides
of a face. Initially the contact graph has a single face corresponding to the second row
of disks. Consider the medial axis of the collection of disksD defining a face. This is the
set of centers of all inclusion-wise maximal disks contained in the piecewise circular
polygon bounding D. It is a finite connected graph comprising arcs of hyperbolas
possibly degenerated into line segments3 as illustrated on figure 1.7. The graph has

Figure 1.7: The medial axis of a circular sequence of 5 disks. Adding the middle disk
(red) splits the face of the contact graph into smaller faces.

one leaf vertex per contact point of touching disks inD. Every vertex of the graph with
degree d is the center of a maximal disk tangent do d disks inD. If |D|> 4, either the
graph has a vertex of degree at least 4, or it contains vertices of degree 3 only and one
of those is adjacent to two non-leaf vertices. In both cases adding the maximal disk
centered at this vertex splits the contact graph into polygons of size less than |D|. This
ends the proof of the claim.

We now have a packing including the vertex and edge-disks, the above second
row of disks and its extension. By construction, the faces of its contact graph incident
to the edges of t are triangles and thanks to claim 1 we can extend the packing so
that the remaining faces have at most four sides. It remains to prove that each of
those faces, triangle or quadrilateral, can be subdivided into non-obtuse triangles so
that the subdivisions agree on the face boundaries. More specifically, we show that a
contact graph reduced to a triangle or a quadrilateral has a non-obtuse triangulation
where the contact points of the disks defining the graph are the only vertices inserted
along its edges (but the triangulation may contain other interior vertices). For the
quadrilateral case one can obtain a triangulation into at most 56 non-obtuse triangles.
The construction is rather tedious and described in [BMR95, lem. 4-7]. For the triangle
case Maheara [Mae11] gives a subdivision into 10 acute triangles as shown below.

3This medial axis is in fact part of the 1-skeleton of the Apollonius diagram of D, also called the
additively weighted Voronoi diagram.
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The fact that the faces of the contact graph incident to the edges of t are triangles thus
implies that they are subdivided into acute triangles, whence the second part of the
lemma.

Maheara is able to bound the size of the non-obtuse triangulation by 3952 ℓma x n
hθ where

ℓma x is the maximum length of an edge of T , n its number of triangles, and h ,θ are
defined as in the proof.

Corollary 1.5.3 (Maheara’11). Every triangulation of a polyhedral surface can be sub-
divided into an acute triangulation.

PROOF. Let T be a triangulation of a polyhedral surface S . From the preceding the-
orem there exists a subdivision T ′ into non-obtuse triangles such that the subdivision
triangles incident to an edge of T are acute. We subdivide uniformly each triangle in
T ′ by splitting every edge at its midpoint, connecting the three midpoints in each face.
Each triangle in T ′ is thus subdivided into 4 similar triangles so that T ′ satisfies the
properties in Theorem 1.5.2. Then, inside every right triangle of T ′ we flip the interior
subdividing edge parallel to its hypotenuse.

This replaces two right subtriangles by two other congruent right subtriangles. Let T ′′
be the resulting triangulation. We also denote byM the set of midpoints introduced
in T ′ (or equivalently in T ′′) and by V ′′ the set of vertices of T ′′.

The edge flipping operation implies that a vertex standing at the right corner of
some right triangle must belong toM . Remark that no such vertex is adjacent to a
vertex of the original edges of T since all their incident triangles are acute. Consider
a vertex v ∈ V ′′ \M . In particular, all its incident angles are acute. If v is incident
to some right triangle replace the subdivision inside its star as described on the next
figure.
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v

If the central “wheel” replacing v is small enough all the triangles in the new star
subdivision will be acute. Since the vertices in V ′′\M are pairwise non-adjacent, their
open stars are pairwise non-intersecting and we can perform a similar re-triangulation
in every star independently. Note that these local modifications do not affect the edges
of T ′′ subdividing the original edges of T by the above remark.

1.6 Equidimensional piecewise distance preserving maps

For a polyhedral surface S , recall that f : S → Ed is piecewise distance preserving
if S admits a triangulation such that the restriction of f to any triangle is isometric.
Theorem 1.2.1 of Burago and Zalgaller asserts the existence of piecewise distance
preserving map when d = 3. Surprisingly, the result remains true for d = 2. I partly
follow the notes of Petrunin and Yashinski [PY16].

Theorem 1.6.1 (Zalgaller). Every polyhedral surface S admits a piecewise distance
preserving map into E2.

PROOF. The proof is actually very simple once we know the existence of acute
triangulations. By Corollary 1.5.3 we may assume that S comes equipped with an
acute triangulationT . Let V0 be the set of vertices ofT . Subdivide each triangle t ofT
into 12 subtriangles as follows. In a first step split every edge at its midpoint and replace
t by 6 triangles, starring its boundary at the circumcenter of t . Note that t being acute
contains its circumcenter in its interior. Let V1 be the set of vertices introduced in this
step, comprising the edge midpoints and triangle circumcenters. Finally split each
subtriangle along the angle bisector incident to its vertex in V0, splitting the opposite
edge accordingly. Denote by V2 the set of vertices thus introduced and let T2 be the
triangulation finally obtained. Hence, |T2|= 12|T |.
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Left, first subdivision. Right, each subtriangle is further split along a bisector resulting in a
triangulation T2. Every triangle of T2 has one (black) vertex in V0, one (white) vertex in V1 and
one (grey) vertex in V2.

We now define f : S → R2, sending T2 linearly into R2 as follows. Let [v0, v1, v2] ∈ T2

with vi ∈ Vi , i = 0,1,2. Set f (v0) = (0,0) ∈R2 and f (v1) = f (v0) + |v0v1|e1, where (e1, e2)
is the canonical basis of R2. Define f (v2) in the upper halfplane {x2 > 0} so that
[ f (v0), f (v1), f (v2)] is isometric to [v0, v1, v2]. It is a simple matter to check that the
image of a vertex is independent of the incident triangle chosen to define its image.
The resulting linear extension f is clearly piecewise distance preserving. Note that in
the above figure the restriction of f to green triangles is orientation preserving while
its restriction to the white triangles is orientation reversing (or vice-versa).

The preceding theorem has a stronger form which is the analog of the theorem of
Burago and Zalgaller in dimension 2.

Theorem 1.6.2 (Akopyan, 2007). Let S be a polyhedral surface. Every nonexpanding
PL map S →E2 can be approximated by a piecewise distance preserving map, where
the C 0 distance to the apprimation can be chosen arbitrarily small.

The proof relies on an extension theorem of independent interest.

Theorem 1.6.3 (Brehm, 1981). Let {p1, . . . , pn} be a set of n points contained in a convex
polygon P in the plane. Then, any nonexpanding map {p1, . . . , pn} → E2 extends to a
piecewise distance preserving map f : P →E2.

PROOF. Denote by qi the image of pi by the nonexpanding map. The proof is by
induction on the number n of points. The base case n = 1 is trivially solved by taking
for f the plane translation of vector p1q1. For n > 1 the induction hypothesis provides
a piecewise distance preserving map h : P →E2 such that h (pi ) = qi for i = 2, . . . , n . We
may assume h (p1) ̸= q1 for otherwise we can set f = h . Consider the set

Ω= {x ∈ P | |p1 x |< |q1h (x )|}

Note that p1 ∈Ω.

Claim. Ω is the interior (relative to P ) of a star-shaped polygon with respect to p1.

PROOF OF THE CLAIM. • Ω is star-shaped: if x ∈Ω then for every y on the segment
[p1, x ]we have

|p1 y |= |p1 x | − |x y |< |q1h (x )| − |h (x )h (y )| ≤ |q1h (y )|

Hence y ∈ Ω as desired. Here, we used the simple fact that the distance preserving
map h is nonexpanding.
• Ω is the interior of a polygon: consider a triangulation T of P such that h is an

isometry on each triangle t of T . Denote by ι the extension of the isometry h t to
the plane. Then, the condition |p1 x | < |q1h (x )| can be written |p1 x | < |ι−1(q1)x | on
t . Hence, Ω∩ t is the intersection of t with the open halfplane containing p1 and
delimited by the bisector of the segment [p1, ι−1(q1)]. It follows that Ω=∪t ∈T Ω∩ t has
indeed a polygonal shape.
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Intersecting the boundary ∂ Ω of Ωwith T , we may assume that h is an isometry on
each segment of ∂ Ω. Let E be the set of segments of ∂ Ω that are not contained in ∂ P .
For each segment e ∈ E we have by continuity of h that |p1 x |= |q1h (x )| for x ∈ e . We
now define f by parts as follows.

• We set f = h on P \Ω.

• For e ∈ E we define f on the triangle p1 ∗ e (the cone with apex p1 over e ) as the
isometry sending p1 to q1 and e to h (e ).

• The remaining part Ω \∪e∈E p1 ∗ e is composed of disjoint open convex polygons
with closure of the form p1 ∗C where C is a subpath of ∂ P . Denote by a and b
the endpoints of C . The partial definition of f already maps [p1, a ] and [p1, b ]
to [q1, h (a )] and [q1, h (b )] respectively. Recalling that |h (a )h (b )| ≤ |a b |, it is an
exercise to extend f inside p1 ∗C in a piecewise distance preserving manner
(hint: fold the polygon a p1b C as a fan)

P

Ω

C

p1

pi qi

q1

e h (e )

a

b

h (b )

h (a )E

E

h

The map f thus defined is clearly continuous and piecewise distance preserving.
Moreover, we have f (p1) = q1 and pi ∈ P \Ω for i ≥ 2, so that f (pi ) = h (pi ) = qi and f is
indeed an extension of pi 7→ qi .

PROOF OF THEOREM 1.6.2. We first suppose that h : S →R2 is a short PL map with
Lipschitz constant C < 1. LetT be a triangulation such that h is linear on each triangle
of T . Denote by f the piecewise distance preserving map approximating h that we
are looking for. We define f on the edges of T . If e is such an edge we let f (e ) result
from a corrugation process applied to h (e ): we simply replace the segment h (e ) by
a polygonal curve with the same extremities and the same length as e but with a
saw-tooth profile. The larger is the number of teeth the closer is f to h along e .

Denote byT 1 the 1-skeleton ofT , which is the union of its edges. We would like f to be
nonexpanding on T 1. This is true for the restriction of f to each edge individually but
might become false in general. To overcome this problem we first “reparametrize” T 1
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by contracting a small neighborhood of each vertex inT 1 and by expanding linearly the
remaining part of each edge to the whole edge: If [p , q ] is an edge, this parametrization
smashes small subsegments [p , p ′] and [q ′, q ] of a fixed lengthδ to p and q respectively
and stretches [p ′, q ′] to [p , q ]. Denote by ϕ :T 1→T 1 the resulting parametrization.
If δ is small enough, h ◦ϕ remains short, say with Lipschitz constant C ′ < 1. We now
apply the above corrugation process to h ◦ϕ using the same corrugations for all the
subsegments of length δ that are incident (hence contracted) to a same vertex. Hence,
if [p , p ′] and [p , q ′] are two such segments, their image by f should coincide. It is
now easy to check that choosing the corrugations so that f and h ′ := h ◦ϕ are at C 0

distance (1−C ′)δ/2, we have | f (x ) f (y )| ≤ dS (x , y ) for all x , y ∈T 1: either dS (x , y )>δ
and then

| f (x ) f (y )| ≤ | f (x )h ′(x )|+|h ′(x )h ′(y )|+|h ′(y ) f (y )| ≤ |h ′(x )h ′(y )|+(1−C ′)δ≤C ′dS (x , y ),

or dS (x , y )≤δ so that x , y are close to a same vertex v and belong to segments smashed
to v by ϕ. Considering y ′ on the same segment as x and at the same distance to v as
y we conclude that | f (x ) f (y )|= | f (x ) f (y ′)| ≤ dS (x , y ′) = dS (x , y ) by construction.

When h is just nonexpanding rather than short, we replace h by C h for some
C < 1 arbitrarily close to 1 to obtain an approximation of C h on T 1, which is also an
approximation of h on T 1.

It remains to invoke the extension theorem 1.6.3 for each triangle t of T . Con-
sider a subdivision of ∂ t such that f is linear on each segment of this subdivision.
Let p1, . . . , pn be the vertices of the subdivision. The extension theorem applied to
{p1, . . . , pn}, the restriction of f to the pi ’s and P := t provides the desired piecewise
distance preserving map. Moreover, if the triangles of T are small enough, applying a
uniform subdivision if necessary, then f and h will be C 0 close on the whole surface
S .
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Historically, the notion of manifold, say at the time of Gauss (1777-1855), was
thought extrinsically as a subspace of some Euclidean space. Starting with Riemann
(1854) this notion evolved toward the more abstract intrinsic definition of a space
which is locally Euclidean. It results from the famous Whitney embedding theorems
that the intrinsic and extrinsic point of view are indeed the same. The weak Whitney
embedding theorem (1936) claims that every n-manifold embeds inR2n+1, while the
strong version reduces the dimension of the target space from 2n +1 to 2n . However,
those theorems do not say anything for embedding more complicated spaces. In this
lecture we look at this question from the algorithmic point of view. For this, we need
to describe in a combinatorial way the spaces we are interested in.

20
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2.1 Topological prerequisites

2.1.1 Complexes

A natural way to describe spaces is to express them as assembly of elementary pieces.
In practice, the pieces are cells, i.e. subspaces homeomorphic to balls of various
dimensions. Using cells in place of more complicated building blocks greatly simplifies
the computation of topological invariants such as homotopy or homology groups.
An assembly of cells is called a complex. Depending on the shape of the cell, we
obtain different categories of complexes with suitable notions of morphisms. We thus
have among others, simplicial, cubic, polyhedral, delta, or cellular (CW) complexes.
The most general complexes are the cellular ones. Their definition is not entirely
combinatorial as it relies on the notion of attaching maps which are continuous maps
sending the boundary of a cell to cells of lower dimensions. It is not the purpose of
these notes to give a formal definition of all the kinds of complexes. We will essentially
stick to finite simplicial complexes and finite one dimensional cellular complexes.

Graphs: One dimensional cellular complexes are also called graphs. Their zero and
one dimensional cells are called vertices and edges, respectively. A graph is thus a
set of vertices connected by edges. Its topological type, up to homeomorphism, is
described combinatorially by two sets, one for the vertices and one for the edges, and a
map associating each edge to a pair of possibly identical vertices, called its endpoints.
An edge whose endpoints coincide is a loop edge. If distinct edges share the same
endpoints, they form a multiple edge. A graph without loop and multiple edge is
said simple. A simple graph is thus another name for a one dimensional simplicial
complex.

Simplicial complexes: Their cells are simplices. A k dimensional simplex, or k -
simplex, is the convex hull of k +1 affinely independent points p0, . . . , pk in some Rd

and is denoted by [p0, . . . , pk ]. The empty set is also considered as a simplex1 with
dimension −1. The convex hull of any subset of the pi ’s is a face of the k -simplex
and is itself a simplex of dimension at most k . A geometric simplicial complex K is a
collection of simplices in someRd such that (1) any face of a simplex in K is in K , (2)
the intersection of any two simplices in K is a common face of the two simplices. The
dimension of K is the maximum dimension of its simplices. The union of the simplices
of K is denoted by |K | and indifferently called the underlying set, the polyhedron,
the carrier, or the total space of K . Any simplex σ ∈ K (formally its carrier |σ|) is
closed in |K |. Its interior, as a cell, is denoted by �σ. By the above property (2), |K |
is the disjoint union of the interior of its simplices. In other words, every point in
|K | belongs to the interior of exactly one supporting simplex. A subdivision of K
is any simplicial complex L such that |K | = |L | and such that every simplex of L is
contained in a simplex of K . Two complexes are isomorphic if there is a one-to-one
correspondence between their simplices that preserves dimension and commutes
with faces: A face of a simplex corresponds to a face of the corresponding simplex.
The complexes are said PL homeomorphic when they have isomorphic subdivisions.

1This assumption facilitates the definition of the join operation. See Section 2.3.1.
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A simplicial complex can be described combinatorially by an abstract simplicial
complex. This is a collection of finite subsets of a ground set with the hereditary
property: Any subset of a subset in the collection is itself in the collection. The subsets
in the collection are its abstract simplices. A simplicial map f : K → L between
abstract simplicial complexes is a map between their vertex sets that sends simplices
to simplices: σ ∈ K =⇒ f (σ) ∈ L . For geometric simplicial complexes simplicial
maps extend uniquely to continuous maps by affine interpolation over each simplex of
the value at its vertices. Up to homeomorphism, we can realize an abstract simplicial
complex by gluing along common faces realizations of its simplices in some Euclidean
space. Alternatively, the realization of an abstract simplicial complex A with ground
set V can be defined as the subset of [0,1]V , with the induced topology, of all points
(tv )v∈V such that {v : tv > 0} ∈ A and

∑

v∈V tv = 1.
The barycentric subdivision, sd K , of a geometric simplicial complex is obtained

by subdividing its simplices recursively by dimension order: The edges are replaced
by starring their two boundary points from their barycenter, then the triangles are
replaced by starring their already subdivided edges from their barycenter, and so
on. This process is repeated, each time replacing a simplex by a cone with apex
its barycenter over its already subdivided boundary. Each simplex of the resulting
barycentric subdivision is the convex hull of the barycenters of an increasing sequence
of simplices of K . The abstract simplicial complex associated to sd K has thus K \ {;}
itself for ground set and its nonempty simplices have the form (σ0,σ1, . . . ,σk−1)where
σ0 ⊂ · · · ⊂σk is a strictly increasing sequence of nonempty simplices of K .

2.1.2 Embeddings

A topological embedding is just a map inducing a homeomorphism onto its image
(endowed with the induced topology of the target space). For a compact space, in
particular for a finite complex, an embedding is just a continuous injective map. For
a simplicial complex K , we may consider more constrained kinds of embeddings. A
linear mapping2 of K is a map f : |K | ,→Rd whose restriction to each simplex of K
is affine. In other words, f sends simplices in K to geometric simplices in Rd , and
is entirely determined by the image of the vertices of K . The mapping is piecewise
linear, or PL, if K has a subdivision K ′ such that f is a linear mapping of K ′. A linear
embedding3 of K is a linear mapping which is also an embedding, and similarly for
a PL embedding. The three notions of embeddings (topological, PL and linear) are
increasingly restrictive in the sense that K may have a topological embedding but no
PL embedding into Rd , while K may have a PL embedding but no linear embedding
into Rd . For more details on this, see Section 2 and Appendix C in [MTW11] or the
notes of Section 5.1 in [Mat08]. From a computational perspective, we will be mainly
interested in PL and linear embeddings.

The weak Whitney theorem has a simple extension to complexes.

2It is common practice in PL topology to use the term linear where the term affine would be more
appropriate.

3Linear embeddings are also called geometric embeddings.
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Proposition 2.1.1. Any finite simplicial complex of dimension n embeds linearly into
R2n+1.

PROOF. Define a linear mapping f of the n dimensional complex K into R2n+1

by mapping the vertices of K to points in general position in R2n+1, i.e., such that
no hyperplane contains more than 2n +1 points. One may for instance choose the
points on the moment curve t 7→ (t , t 2, . . . , t 2n+1). We claim that f is an embedding.
This is clearly the case when restricted to any simplex of K : The simplex has at most
n +1 vertices which are sent to affinely independent points by the general position
assumption. To see that f is injective we just need to prove that distinct simplices have
their interior sent to disjoint sets. So, let σ = [v1, . . . , vk ] and τ = [w1, . . . , wℓ] be two
distinct simplices of K . Since k + ℓ≤ 2n +2, the general position assumption implies
that the image points f (v1), . . . , f (vk ), f (w1), . . . , f (wℓ) span a simplex of dimension
k + ℓ−1 and that f (σ), f (τ) are two distinct faces of this simplex. It follows that f (�σ)
and f (�τ) are indeed disjoint. As already observed, injectivity implies embedding for
finite simplicial complexes.

Exercise 2.1.2. Prove that any set of points on the moment curve t 7→ (t , t 2, . . . , t d ) in
Rd is in general position, i.e., that no hyperplane contains more than d of the points.

In view of the Proposition, the question of whether an n-dimensional complex
embeds into Rd is only interesting for d ≤ 2n . In these notes we will focus on the case
d = 2n . There is indeed a nice invariant that leads to practical algorithms in this case.
In the next section we consider the case n = 1, which amounts to decide if a graph is
planar.

2.2 Graph embedding

The graph planarity problem has received much attention in the computer science
community, culminating with the linear time algorithm of Hopcroft and Tarjan [HT74].
It happens that topological, PL and linear embeddability are equivalent for embedding
graphs into the plane, so that any planar graph may be drawn with straight lines for
the edges. See the lecture notes [LdM17] for more details. The most striking result
concerning graph planarity is probably the Kuratowski’s criterion in terms of forbidden
graphs. Recall that the complete graph K5 is obtained by connecting five vertices in all
possible ways, while the complete bipartite graph K3,3 is obtained by connecting each
of three independent (i.e., pairwise non-connected) vertices to each of three other
independent vertices.

Theorem 2.2.1 (Kuratowski, 1929). A graph is planar if and only if it does not contain a
subdivision of K5 or K3,3 as a subgraph.

See [LdM17] for a proof. We shall refer to this theorem but use a different path
to derive a planarity criterion due to van Kampen (1932) that is more amenable to a
generalization to higher dimensions. We follow the presentation of Wu [Wu85].
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Let G = (V , E ) be a graph with vertex set V and edge set E . Consider the set C2 of
unordered pairs of disjoint edges. We denote by σ×τ such an ordered pair, where
σ,τ ∈ E do not share any vertex. (Remark that σ×τ= τ×σ.) Intuitively, σ×τ is a
2-dimensional rectangular cell. We denote by C 2 the vector space ZC2

2 (we write Z2

for Z/2Z), viewing vectors as maps C2→Z2. Similarly, we consider the set C1 of pairs
(v,σ) ∈ V × E such that v is not an endpoint of σ and the vector space C 1 of maps
C1→ Z2. We also write v ×σ for (v,σ). The coboundary operator is the morphism
δ : C 1→C 2 defined for any c ∈C 1 by4

δc (σ×τ) = c (v1×τ) + c (v2×τ) + c (w1×σ) + c (w2×σ)

whereσ×τ ∈C2, and v1, v2 (resp. w1, w2) are the endpoints ofσ (resp. τ). Let (σ×τ)∗ ∈
C 2 take value 1 atσ×τ and 0 elsewhere. Similarly, let (v ×τ)∗ ∈C 1 take value 1 at v ×τ
and 0 elsewhere. Then, the above formula amounts to define the coboundary on the
canonical basis of C 1 by

δ(v ×τ)∗ =
∑

v∈σ
(σ×τ)∗ (2.1)

It appears that the quotient C 2/Imδ is a topological invariant5.

Lemma 2.2.2. PL homeomorphic graphs have isomorphic quotient groups C 2/Imδ.

PROOF. Since any subdivision of a graph can be obtained by repeatedly splitting
edges, it is enough to prove the lemma for a graph G ′ obtained by splitting an edge
e ∈ E of a graph G = (V , E ). Let v be the new vertex splitting e and let e1, e2 be the
resulting edges in G ′. We denote with a prime the groups or maps related to G ′. Hence,
δ′ : C ′1→C ′2 is the coboundary operator for G ′. We view edges in E \ {e } as edges of
G ′ as well as edges of G . Define the morphisms s1 : C ′1→C 1 and s2 : C ′2→C 2 by

s1(c )(u ×τ) =

¨

c (u × e1) + c (u × e2) if τ= e ,

c (u ×τ) otherwise
for c ∈C ′1, u ∈V ,τ ∈ E , u ̸∈τ

and

s2(d )(σ×τ) =

¨

d (σ× e1) +d (σ× e2) if τ= e ,

d (σ×τ) ifσ,τ ̸= e
for d ∈C ′2,σ,τ ∈ E ,σ∩τ= ;

It is easily checked that s1 and s2 are onto and satisfy δs1 = s2δ
′. The proof is left

as an exercise. It follows that s2(Imδ′) ⊂ Imδ and that s2 induces an epimorphism
s ∗2 : C ′2/Imδ′→C 2/Imδ. It remains to see that s ∗2 is injective. So, suppose that s ∗2 (d +
Imδ′) = 0, i.e. that s2(d ) ∈ Imδ. We have s2(d ) = δc for some c ∈ C 1. By surjectivity
of s1, c = s1c ′ for some c ′ ∈ C ′1, so that s2(d ) = δs 1(c ′) = s2(δ′c ′), or equivalently,
s2(d −δ′c ′) = 0. Now, it is easily seen that this implies d −δ′c ′ =

∑

σασδ
′(v ×σ)∗ for

some coefficients ασ ∈Z2 (see (2.1)). In other words, ker s 2⊂ Imδ′. We conclude that
d ∈ Imδ′ as desired.

For an element c ∈C 2, we denote by [c ]2 its coset in C 2/Imδ.

4It is common practice to write δc for δ(c ).
5This topological invariant is the second equivariant cohomology group of the deleted product of G .

Equivalently, this is the second (ordinary) cohomology group of the same deleted product quotiented
by the action that exchanges coordinates in the (deleted) product.
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2.2.1 The mod 2 van Kampen obstruction

Two paths in the plane are said in general position if each one avoids the endpoints of
the other one, except at common endpoints, and if they otherwise cross transversally
at their finitely many intersection points. An immersion into the plane of G = (V , E )
is said in general position if the image of its edges are pairwise in general position.
We now associate to any PL immersion f : |G | →R2 in general position the element
c f ∈C 2 given by

c f (σ×τ) = | f (σ)∩ f (τ)| mod 2, forσ,τ ∈ E ,σ∩τ= ;

Lemma 2.2.3. [c f ]2 is independent of f .

We give two proofs, a short proof by picture, and a longer formal one.

PROOF BY PICTURE. Every two general position immersions are related by a sequence
of isotopies of R2 and of local moves as on Figure 2.1. An isotopy or any of the I-IV

I II III IV V

v

e

Figure 2.1: The first three moves I, II, III are known as (shadows of) Reidemeister
moves. The IV move amounts to a transposition in the edge order around a vertex,
while the V move is referred to as a finger move or an (e , v )-move.

moves leaves c f unchanged while an (e , v )-move results in an additional termδ(v ×e )∗

in c f . In any case, [c f ]2 is preserved.

Exercise 2.2.4. Figure 2.1 actually applies to smooth curves. Can you adapt the proof
and find a list of moves specific to the PL category?

A formal proof would require showing that the five moves in Figure 2.1 are the only
required moves to transform an immersion into another one. (See Exercise 2.2.4 for
the PL case.) We give below a more combinatorial proof due to Wu [Wu85]. We first
give a simple relation between winding number and intersection number. Recall that
the winding number w (γ, p ) of a plane closed curve γwith respect to a point p ̸∈ γ is
the total number of times γ travels counterclockwise around6 p .

6Formally, identifying the plane with C, w (γ, p ) = 1
2πi

∮

γ
dz

z−p =
1

2πi

∫ β

α

γ′(t )
γ(t )−p d t , where γ : [α,β ]→C.
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Lemma 2.2.5. Let w2(·, ·) =w (·, ·) mod 2 be the mod 2 winding number. For any path π
with endpoints p , q in general position with respect to a closed curve γ:

w2(γ, p )−w2(γ, q ) = |γ∩π| mod 2

where |γ∩π| counts the number of intersections between γ and π.

PROOF. We prove the lemma when γ and π are PL curves. The case of continuous
curves follows by PL approximation. It is well-known that w (γ, p ) is the algebraic
number of intersections of γwith a ray originating from p . In particular, all rays with
origin p have the same algebraic number of intersections with γ. As we move from
p towards q along π, aligning the rays from p and from q we see that the winding
number changes exactly as we traverse γ and the change is ±1 depending on the
orientation of γ and π at the intersection point. The lemma follows.

PROOF OF LEMMA 2.2.3, WU’S VERSION. Let f , g : G → R2 be two immersions of G
in general position.

• Let e = [p , q ] be an edge of G . We first consider the case where f and g coincide
on G − e (the graph G with the interior of edge e removed). For every edges
σ,τ distinct from e , we obviously have c f (σ×τ) = cg (σ×τ) since both values
only depends on the embedding ofσ and τ. Let Ce := f (e ) · g (e )−1 be the closed
curve formed by concatenating f (e )with the path g (e ) traversed in the opposite
direction. Consider the cochain

c =
∑

v

w2(Ce , f (v ))(v × e )∗

where the sum runs over all vertices of G not incident to e , i.e., distinct from p
and q . We compute, writing ∂ σ= s − r

c f (σ× e )− cg (σ× e )≡ | f (σ)∩ f (e )| − |g (σ)∩ g (e )| mod 2

≡ | f (σ)∩Ce | mod 2 (since f (σ) = g (σ))
=w2(Ce , f (s ))−w2(Ce , f (r )) (by Lemma 2.2.5)

On the other hand, we compute

δc (σ× e ) = c (∂ σ× e ) + c (σ× ∂ e )
=w2(Ce , f (s ))−w2(Ce , f (r ))

For disjoint edgesσ,τboth distinct from e we trivially have c f (σ×τ)−cg (σ×τ) =
c (∂ σ × τ) + c (σ × ∂ τ) = 0. It follows that c f − cg = δc , or equivalently that
[c f ]2 = [cg ]2.

• We now consider the case where f and g only agree on the vertices of G . Let
e1, . . . , em be the edges of G . We define immersions fi that agree with g on
e1, . . . , ei and with f on the remaining edges. Putting f0 = f , we have by the
preceding paragraph, that [c fi−1

]2 = [c fi
]2 for i = 1, . . . , m . It follows that [c f ]2 =

[cg ]2.
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• We finally consider the case of arbitrary f and g in general position. Denote by
v1, . . . , vn the vertices of G . Using an induction on the number of vertices one
can construct a PL homeomorphism H of the plane that sends f (vi ) to g (vi ). On
the one hand, we have [c f ]2 = [cH ◦ f ]2 and on the other hand [cH ◦ f ]2 = [cg ]2 by the
preceding paragraph7. We conclude that [c f ]2 = [cg ]2 in the general case.

In view of Lemma 2.2.3, we denote by8 κ2(G ) the value of [c f ]2 computed from any
immersion f in general position. It appears that κ2(G ) only depends on the topology
of |G | and not on its cellular decomposition. In the proof of Lemma 2.2.2, we intro-
duced an edge splitting isomorphism s ∗2 : C ′2/Imδ′→C 2/Imδ. By composing such
morphisms, we obtain a natural subdivision isomorphism s ∗ between the quotients
C 2/Imδ computed for a subdivision of a graph or the graph itself. Likewise, if H is a
subgraph of G , there is a natural inclusion morphism ι∗ between the quotient groups
for G and H . The topological invariance of κ2(G ) is formalized in the following easy
lemma whose proof is left to the reader.

Lemma 2.2.6. If ι : H ,→G is a cellular inclusion, we have ι∗(κ2(G )) = κ2(H ). Similarly,
if G ′ a subdivision of G and s is the corresponding subdivision operator, we have
s ∗(κ2(G ′)) = κ2(G ).

The topological invariant κ2(G ) of G is called the mod 2 van Kampen obstruction.
Note that c f = 0 if f is an embedding. Hence, κ2(G ) = 0 whenever G is planar. It thus
follows from the next lemma that the Kuratowski forbidden graphs K5 and K3,3 are
non-planar.

Lemma 2.2.7. κ2(K5) and κ2(K3,3) are each nonzero.

PROOF. Compute κ2 using your preferred embeddings of K5 and K3,3. Can you draw
them with a single crossing?

We are now ready to state that the van Kampen obstruction is a good invariant to test
graph embeddability in the plane.

Theorem 2.2.8. A graph is planar if and only if its mod 2 van Kampen obstruction
cancels.

PROOF. We already observed that the condition is necessary. Suppose that a graph
G satisfies κ2(G ) = 0. By the preceding lemmas 2.2.6 and 2.2.7, G cannot contain a
subdivision of K5 or K3,3. It ensues from Kuratowski’s theorem that G is planar.

This theorem is known as the (strong) Hanani-Tutte theorem in graph theory and is
expressed as follows: any (generic) immersion of a non-planar graph contains two
disjoint edges whose images cross oddly.

7This argument found by Axel Péneau simplifies the proof of Wu.
8The subscript 2 is used to emphasize that we consider mod 2 cohomology.
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2.3 The van Kampen-Flores Theorem

The mod 2 van Kampen obstruction constructed for a graph G as in the previous
section can be interpreted as a certain equivariant cohomology class of the deleted
product G ×∆G of G . This deleted product is composed of all the products of disjoint
cells (vertex or edge) of G and has the same equivariant homotopy type (it is even
an equivariant deform retract) as the topological deleted product |G | × |G | \∆, where
∆ = {(x , x ) ∈ |G | × |G |} is the diagonal of |G | × |G |. Here, by equivariant we refer to
invariance with respect to some action of Z2 on the deleted product9. The mod 2 van
Kampen obstruction for graphs can be generalized to complexes of dimension n > 1
using integer instead of Z2 coefficients and its non-vanishing is indeed an obstruction
to embedding inR2n . For n > 2 this obstruction also provides a sufficient condition for
embeddability in R2n . However, this is not the case for n = 2 as Freedman, Krushkal
and Teichner [FKT94] constructed a relatively simple simplicial complex of dimension
2 whose van Kampen obstruction vanishes but that cannot be embedded in R4. In
this section we look at a slightly different approach based on the deleted join rather
than the deleted product. It leads to the van Kampen (1932) – Flores (1933) theorem
that for every dimension n the n-skeleton of the (2n +2)-simplex does not embed into
R2n . We follow the exposition of de Longueville [dL13, Ch. 4].

2.3.1 Join operations

The join

The join X ∗Y of two topological spaces X and Y is the quotient X ×Y × I /∼where
I = [0, 1] is the unit interval and the equivalence classes of∼ are of the form {x }×Y ×{0},
X ×{y }× {1} and are otherwise singletons. Intuitively, X ∗Y is the “cube” X ×Y × I
where we have collapsed the face X ×Y ×{0} to X and the face X ×Y ×{1} to Y .

X

Y

I X ∗Y

Suppose that X and Y are subspaces of some Euclidean space, and that X and Y
are contained in respective affine subspaces that are affinely independent, meaning
that the union of affinely independent pointsets, one in each subspace, is itself inde-
pendent. Then, X ∗Y is homeomorphic to the union of all line segments connecting
points of X to points of Y . The points of this geometric join are convex combina-
tions of the form (1− t )x + t y with (x , y , t ) ∈ X × Y × I . The formal combination
(1− t )x ⊕ t y can also be used to describe points of the topological join if we consider
that 0.x ⊕1.y = 0⊕ y is independent of x and 1.x ⊕0.y = x ⊕0 is independent of y .

9It is also possible to quotient the deleted product by this action and to consider the usual cohomol-
ogy on the quotient space.
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When Y = X , beware that x ⊕ 0 and 0⊕ x represent points in disjoint copies of X .
Formally, one should consider two distinct copies X ×{1} and X ×{2} of X and write
(x , 1)⊕0 and 0⊕ (x , 2). We however drop the second component for concision.

The join σ ∗ τ of two simplices is a simplex of dimension dimσ+ dimτ+ 1. If
σ,τ are geometric simplices with affinely independent vertices, the vertices of their
geometric join is the union of their vertices. In particular, a simplex with vertices
. . . , pi , . . . may be written as ∗i pi . Considering abstract simplices as subsets of a ground
set, the join operation of simplices thus corresponds to the union of subsets. More
generally, the join of two simplicial complexes K , L , either geometric or abstract, is
the simplicial complex

K ∗ L = {σ ∗τ |σ ∈ K ,τ ∈ L}

When K = L , we insist on the fact that the empty set is considered as a simplex in K
and that for allσ ∈ K , the simplicesσ ∗ ; and ; ∗σ are distinct in K ∗K .

Exercise 2.3.1. Prove that the geometric join of two embedded subspaces is indeed
homeomorphic to their topological join. Deduce that for simplicial complexes K and
L the carrier of their join |K ∗ L | is homeomorphic to the join of their carriers |K | ∗ |L |

Note that simplicial complexes behave well with respect to the join operation. This
is less true for the product operation as it is not so immediate to obtain a simplicial
decomposition of the product of two simplicial complexes.

The deleted join

The deleted join of a simplicial complexes K is the subcomplex of K ∗K defined as

K ∗∆ K = {σ ∗τ |σ,τ ∈ K ,σ∩τ= ;}

More generally, if K and L are subcomplexes of a same complex we set

K ∗∆ L = {σ ∗τ |σ ∈ K ,τ ∈ L ,σ∩τ= ;}

The deleted join can also be defined for a topological space X . Using the formal convex
combination notation, we define

X ∗∆ X := X ∗X \ {
1

2
x ⊕

1

2
x | x ∈ X }

The simplicial and topological deleted join are closely related.

Proposition 2.3.2. For any simplicial complex K , the space |K ∗∆ K | is an equivariant
deform retract of |K | ∗∆ |K |. In particular, both spaces have the same homotopy type.

|K |
|K |

I
|K ∗K |= |K | ∗ |K | |K ∗∆ K | |K | ∗∆ |K |
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PROOF. Denote by ρ : |K | ∗∆ |K | → |K ∗∆ K | the retraction we are looking for. Geo-
metrically, if∆′ := |K | ∗ |K | \ |K | ∗∆ |K |= { 1

2 x ⊕ 1
2 x | x ∈ |K |} is the diagonal of |K | ∗ |K |,

we shall defineρ so that it retracts every conic slice of the form p ∗∆′ with p ∈ |K ∗∆K |
to p . The next figure illustrates the case where K is a 1-simplex.

q
ρ(q ) = p |K |

|K | ∆′

More formally, denote by Supp(x ) the supporting simplex of a point x ∈ |K |. We have

|K ∗∆ K |= {(1− t )x ⊕ t y | x , y ∈ |K | and Supp(x )∩Supp(y ) = ;}

We let ρ((1− t )x ⊕ t y ) := (1− t ′)x ′⊕ t y ′ where x ′, y ′, t ′ are defined as follows. Denote
by V the set of vertices of K and by (xv )v∈V and (yv )v∈V the respective barycentric
coordinates of x and y as defined in Section 2.1.1. We let x ′ and y ′ be the points with
respective barycentric coordinates (x ′v )v∈V and (y ′v )v∈V satisfying

(1− t ′)x ′v =max{(1− t )xv − t yv , 0}/S and t ′y ′v =max{t yv − (1− t )xv , 0}/S

with S = Sx +Sy , Sx =
∑

v∈V

x ′v , Sy =
∑

v∈V

y ′v and t ′ = Sy /S

Note that the division by S is well-defined. Indeed, S = 0 implies (1− t )xv = t yv for all
v ∈V , whence by summing over V , t = 1/2 and x = y . In turn, (1− t )x ⊕ t y = 1

2 x ⊕ 1
2 x

cannot be a point of |K | ∗∆ |K |, and S does not cancel on |K | ∗∆ |K |. Since x ′ and y ′

have disjoint support we have (1− t )x ′⊕ t y ′ ∈ |K ∗∆ K | as desired. Also, when x and
y have disjoint support, we have x ′ = x , y ′ = y and t ′ = t . It follows that ρ is the
identity over |K ∗∆ K |. Moreover, the linear interpolation between ρ and the identity
on |K |∗∆ |K | is a well-defined equivariant map at every interpolating parameter. (Refer
to the next section for the notion of equivariance.) This concludes the proof of the
lemma.

2.3.2 The Z2-index

A Z2-space (X ,α) is a space X together with an action of Z2 on it. Such a Z2-action is
determined by the action of 1 which must be a continuous involution α : X → X . We
may speak of the Z2-space X , omitting the involution when the Z2-action is implicitly
clear. The Z2-action, or Z2-space, is free if α has no fixed point. The most important
example of free Z2-space is given by the antipodality acting on the Euclidean sphere
Sd . Another basic examples are provided by squaring a space, as in X ×X or X ∗X , and
exchanging coordinates for the Z2-action. To be specific for X ∗X , this action is given
by (1− t )x ⊕ t y 7→ t y ⊕ (1− t )x , or equivalently by (x , y , t ) 7→ (y , x ,1− t ), recalling
that X ∗X is a quotient of X ×Y × I . These actions are not free, but become free if we
restrict the squared space to its deleted product or its deleted join.
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The Z2-spaces form a category whose morphisms are called Z2-maps or equivari-
ant maps. A continuous map f : (X ,α)→ (Y ,β ) is equivariant if it commutes with the
Z2-actions, i.e., if the diagram

X

α
��

f // Y

β
��

X
f // Y

is commutative. Z2-spaces have their simplicial counterpart where we ask that the
spaces are simplicial complexes and the involved maps are simplicial. The above
sphere example has a simplicial version. Consider the barycentric subdivision sd(∂ σd+1)
of the boundary of a (d +1)-simplex10 σd+1 = 2[d+2]. The vertices of sd(∂ σd+1) are thus
the proper subsets of [d +2]. Consider the antipodal simplicial map αs on sd(∂ σd+1)
sending such a subset to its complement in [d +2]. Then (sd(∂ σd+1),αs ) is a simplicial
Z2-complex Z2 homeomorphic to Sd endowed with the antipodality.

Let us write X ⪯Z2 Y if there exists an equivariant map between the Z2-spaces
X and Y . It is easily seen that ⪯Z2 is a reflexive and transitive relation on Z2-spaces.
Define the Z2-index, Ind(X ), of a Z2-space X as the minimum d such that X ⪯Z2 Sd ,
i.e., such that there exists an equivariant map X → Sd . We put Ind(X ) =∞ is no such
d exists. The transitivity of ⪯Z2 directly implies that the Z2-index is non-decreasing for
this relation.

Exercise 2.3.3. Show that any non free Z2-space is an upper bound for ⪯Z2 and that its
Z2-index is infinite.

Proposition 2.3.4. Ind(Sd ) = d .

PROOF. We obviously have Ind(Sd ) ≤ d by reflexivity of ⪯Z2 . The other direction
Ind(Sd )≥ d is a direct consequence of the Borsuk-Ulam theorem. Indeed, one of the
classical formulation of this theorem says that every continuous map Sd →Rd must
send a pair of antipodal points to the same point. The existence of an equivariant
map Sd → Sn with n < d would however provide a map Sd → Sn ,→Rd without this
property.

Lemma 2.3.5. Ind(Rd ∗∆Rd )≤ d

PROOF. We just need to exhibit a continuous equivariant map Rd ∗∆Rd → Sd . The
map Rd ×Rd × I →Rd+1, (x , y , t ) 7→ (1−2t , (1− t )x − t y ) is constant on each fiber of
Rd ×Rd × I → Rd ∗Rd and thus quotients to a map Rd ∗Rd → Rd+1. Moreover, the
norm of this map never cancels on Rd ∗∆Rd ⊂Rd ∗Rd , so that the map

Rd ∗∆Rd → Sd , (1− t )x ⊕ t y 7→
(1−2t , (1− t )x − t y )
∥(1−2t , (1− t )x − t y )∥

is well-defined. We easily check that it is equivariant.

Exercise 2.3.11 in the next section asks you to strengthen Lemma 2.3.5 to show that
Ind(Rd ∗∆Rd ) = d .

10As usual we write [n ] for {1, . . . , n}.
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2.3.3 An obstruction to embedding

Suppose that f : |K | ,→ Rd is an embedding of a simplicial complex K . Then, the
Z2-map f ∗ f : |K | ∗ |K | → Rd ∗Rd , (1− t )x ⊕ t y 7→ (1− t ) f (x )⊕ t f (y ) restricts to a
Z2-map |K ∗∆ K | →Rd ∗∆Rd . It ensues that Ind(|K ∗∆ K |)≤ Ind(Rd ∗∆Rd ). In view of
Lemma 2.3.5, we have

Proposition 2.3.6. If Ind(|K ∗∆ K |)> d then K has no embedding in Rd .

In fact, theZ2-map f ∗ f : |K ∗∆K | →Rd ∗∆Rd is well-defined as soon as f (x ) ̸= f (y )
for every x , y ∈ |K |with disjoint support. It follows that the condition Ind(|K ∗∆K |)> d
implies that for every map |K | →Rd there are two disjoint simplices whose images
intersect.

We will now apply Proposition 2.3.6 to to prove that some d -dimensional com-
plexes cannot be embedded into Rd . Before that we introduce yet another simple
operation on complexes.

The combinatorial Alexander dual. Let K be a proper subcomplex of the n − 1
dimensional simplex 2[n ]. (Note that every complex is a subcomplex of the simplex
over its vertices.) Since K is a proper subcomplex it must be included in the boundary
of the (n −1)-simplex. This boundary can be identified with a sphere and the intuition
behind the Alexander dual is to take the complement of the antipodal image of K on
the sphere. More precisely, the Alexander dual of K with respect to 2[n ] is the proper
subcomplex of 2[n ] defined by

K A = {σ ∈ 2[n ] | [n ] \σ ̸∈ K }

In other words, K A is composed of the simplices whose complements are not in K . The
following exercise makes the above intuition more concrete. Here, by a subcomplex
induced by a subset W of vertices we mean the set of simplices whose vertices fall in
W .

Exercise 2.3.7. Let V := K \{;} ⊂ 2[n ] denote the set of vertices of sd K . Show that sd K A

is the subcomplex of sd(∂ 2[n ]) induced by the complement of αs (V ), where αs is the
antipodal simplicial map on sd(∂ 2[n ]) sending a vertexσ ∈V to its complement [n ]\σ.

The proof of the following lemma is immediate from the definitions.

Lemma 2.3.8. Let K ⊂ 2[2d+3] be the d -skeleton of the (2d +2)-simplex. Then K A = K .

Bier spheres. Given a proper subcomplex K of 2[n ], the Bier sphere of K with respect
to n is

Biern (K ) = K ∗∆ K A

Quite surprisingly the topology of the Bier sphere is independent of K . To see this we
first subdivide Biern (K ) using a subdivision process specific to subcomplexes of the
join of complexes. Given the simplicial complexes K and L , the shore subdivision of
a subcomplex J ⊂ K ∗ L is given by

ssd J =
⋃

σ∗τ∈J

sdσ ∗ sdτ
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τ

σ ∗τ sdσ ∗ sdτ sd(σ ∗τ)

σ

Comparison between the shore and barycentric subdivision of the 2-simplex expressed as the
join of an edge and a vertex.

Being a subdivision, the shore of J has a carrier homeomorphic to |J |.

Proposition 2.3.9. ssd(Biern (K )) is isomorphic to sd(∂ 2[n ]).

PROOF. For a simplexσ ∈ sd(∂ 2[n ]), we write ∪σ⊂ [n ] for the union of its vertices,
viewed as proper subsets of [n ]. Recall that αs is the antipodal simplicial map on
sd(∂ 2[n ]). We have

ssd(Biern (K )) =
⋃

σ∗τ∈Biern (K )

sdσ ∗ sdτ=
⋃

σ∈K ,τ∈K A ,
σ∩τ=;

sdσ ∗ sdτ=
⋃

s ∈sd K , αs (∪t ) ̸∈K ,
∪s ⊂ αs (∪t )

s ∗ t

To see the last equality, first note that s ∈ sdσ with σ ∈ K is equivalent to s ∈ sd K .
Similarly, t ∈ sdτwithτ ∈ K A is equivalent to t ∈ sd K A. In turn, writingτ0 ⊂ · · · ⊂τℓ for
the vertices of t , this means [n ] \τℓ ̸∈ K , i.e., αs (∪t ) ̸∈ K . Finally, writingσ0 ⊂ · · · ⊂σk

for the vertices of s , the conditions s ∈ sdσ, t ∈ sdτ becomes σk ∈σ and τℓ ∈ τ. It
follows that the conditionσ∩τ= ; reduces toσk ∩τℓ = ;which in turn can be written
∪s ⊂αs (∪t ).

We now consider the simplicial map ϕ : ssd(Biern (K )) → sd(∂ 2[n ]) sending the
simplex s ∗ t to the simplex s ∗αs (t ). Equivalently,ϕ sends a vertex of the formσ0 ∗; to
itself and of the form ; ∗τ0 to ; ∗αs (τ0). This map is well-defined since the condition
∪s ⊂αs (∪t ) implies that the vertices of s ∗αs (t ) form an increasing sequence of subsets
of [n ], hence a simplex in sd(∂ 2[n ]). ϕ is injective and it remains to see that it is
surjective. For this, consider a simplexσ of sd(∂ 2[n ]) with verticesσ0 ⊂ · · · ⊂σm . Let k
be the minimum index such thatσk ̸∈ K . Then, defining s as the simplex with vertices
σ0 ⊂ · · · ⊂σk−1 and defining t as the simplex with the remaining vertices ofσ, we see
thatσ=ϕ(s ∗αs (t )).

We are now ready to prove that

Theorem 2.3.10 (van Kampen - Flores). The d -skeleton of the (2d +2)-simplex does
not embed in R2d .

PROOF. Let K ⊂ 2[2d+3] be the d -skeleton of the (2d +2)-simplex. By Lemma 2.3.8
and Proposition 2.3.9, Bier2d+3(K ) = K ∗∆ K is isomorphic to the (2d + 1)-sphere.
From Proposition 2.3.4, we have Ind(K ∗∆ K ) = 2d +1 and we conclude by invoking
Proposition 2.3.6.

Exercise 2.3.11. Consider11 the d -simplexσ= 2[d+1] as a subcomplex of 2[d+2]. What is
the Alexander dual ofσ? Deduce that Ind(σ∗∆σ) = d . Conclude that Ind(Rd ∗∆Rd )≥ d .

11This exercise was suggested by Axel Péneau.
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Exercise 2.3.12. Consider the simplicial complex represented in the figure below.

1

1

2

2

3

3

4

5 6

It is composed of 6 vertices and 10 triangles forming a disk, the boundary edges of
which should be identified according to the boundary vertex numbering. This complex
is topologically a projective plane. Mimic the proof of the van Kampen - Flores theorem
to prove that the projective plane cannot be embedded into R3.
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We already saw that every m-dimensional complex embeds linearly into R2m+1.
What about the existence of linear embeddings intoRd with d ≤ 2m? It turns out that
independently of obstruction theories, like Whitney or van Kampen obstructions, this
question is decidable. We first look at a combinatorial approach based on the notion
of chirotope for a point configuration.

3.1 Affine point configurations

Given a set {p1, . . . , pn} of n points in Rd , its chirotope is the map {1, . . . , n}d+1 →
{−1, 0, 1} defined by

(i0, . . . , id ) 7→ sign(det

�

1 · · · 1
pi0
· · · pid

�

) (3.1)

35
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In other words, the chirotope returns for every (d +1)-tuple of points the orientation of
the d -simplex defined by those points. Here, the orientation is assumed to be zero if the
points are affinely dependent. Intuitively, the chirotope records the relative positions
of the points in a point configuration. For instance, it is easily seen that the chirotope
determines the combinatorial structure of the convex hull of a point configuration.
Not every map {1, . . . , n}d+1→{−1, 0, 1} can be the chirotope of a point configuration.
The map has to satisfy certain conditions related to the Grassman-Plücker relations
and to Radon partitions.

3.1.1 Grassman-Plücker relations

Let V = (v1, . . . , vn ) be a family of n vectors inRd . As usual, put [n ] := {1, . . . , n}. For a
sequence I = (i1, . . . , id ) of d indices in [n ], we denote by

mI := det(vi1
, . . . , vid

)

the determinant with respect to the canonical basis ofRd of the d -tuple of vectors of V
indexed by I . The minors (mI )I∈([n ]d ), where

�[n ]
d

�

⊂ [n ]d denotes the set of all increasing

sequences of d indices in [n ], are the homogeneous Plücker coordinates associated
to V .

Theorem 3.1.1. The homogeneous Plücker coordinates associated to V satisfy the
Grassman-Plücker relations:

∀I ∈
�

[n ]
d +1

�

,∀J ∈
�

[n ]
d −1

�

:
d
∑

s=0

(−1)s mI−is
m J+is

= 0 (3.2)

where I − is is obtained by deleting is in I = (i0, i1, . . . , id−1) , and J + is is obtained by
appending is at the end of J . Note that J +is is not necessarily increasing and that m J+is

cancels whenever is ∈ J .

PROOF. For J = ( j0, j1, . . . , jd−2−1) fixed, consider the (d +1)-linear map f : (Rd )n+1→
R given by

(u0, . . . , ud ) 7→
d
∑

s=0

(−1)s det(u0, . . . ,cus , . . . , ud )det(v j0
, . . . , v jd−2

, us )

We easily check that f is alternating. However, an alternating (d +1)-linear map over
a d dimensional space must be zero. In particular, f (vi0

, . . . , vid
) = 0, which is precisely

Equation (3.2).

Exercise 3.1.2. Prove that the map f in the above proof is indeed alternating.

Cultural note: The homogeneous Plücker coordinates provide an embedding of the

Grassmannian Gr(d ,Rn ) into the projective space P
�

∧d Rn
�

of the d -fold exterior

product
∧d Rn of Rn . Let us briefly explain why. Recall that Gr(d ,Rn ) is the set of
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d dimensional subspaces of Rn . The exterior (or Grassmann) algebra
∧

Rn can be
defined as the quotient of the tensor algebra

⊗

Rn by the two-sided ideal generated
by the tensor products {v ⊗ v }v∈Rn . The exterior product ∧ thus induced by the tensor
product is antisymmetric as can be seen by expanding (x+y )⊗(x+y ). As a vector space,
the d -fold exterior product

∧d Rn has a basis composed of the d -vectors eI = ei1
∧· · ·∧

eid
, where I = (i1, . . . , id ) ∈

�[n ]
d

�

and (e1, . . . , en ) is the canonical basis ofRn . Consider a
family W = (w1, . . . , wd ) of d vectors in Rn as a d ×n matrix whose columns are the
components of the vi expressed in the canonical basis. Viewing the transpose matrix
W t as a family V = (v1, . . . , vn ) of n vectors inRd , we compute w1∧ · · · ∧wd =

∑

I mI eI ,
where the mI are the homogeneous Plücker coordinates associated to V . One can
show that two families of d independent vectors have proportional wedge products if
and only if they span the same vector space, whence the claimed embedding. In fact,
the Grassman-Plücker relations (3.2) are a necessary and sufficient condition on the
mI to come from a wedge product of d vectors, the so-called decomposable d -vectors.

The Grassmannian Gr(d ,Rn ) is thus embedded in P
�

∧d Rn
�

as a projective algebraic
variety determined by quadratic equations.

3.1.2 Radon partitions

LetP be a set of points in Rd . Any partitionP =P ′ ∪P ′′ such that the convex hulls
ConvP ′ and ConvP ′′ have a nonempty intersection is called a Radon partition of
P . Recall thatP is in general position if no affine hyperplane contains more than d
points ofP .

Lemma 3.1.3. LetP =P ′∪P ′′ be a partition of a set of d +1 points in general position
in Rd . Then ConvP ′ and ConvP ′′ are disjoint.

Note that the lemma just says that two faces of a d -simplex with disjoint vertex
sets are indeed disjoint.

PROOF. WriteP = {pi }i∈I ,P ′ = {pi }i∈I ′ andP ′′ = {pi }k∈I ′′ with I = I ′∪ I ′′. Suppose
by way of contradiction that ConvP ′∩ConvP ′′ contains a point p . Then we can write
p as two convex combinations

∑

i∈I ′ αi pi and
∑

i∈I ′′ αi pi with
∑

i∈I ′ αi =
∑

i∈I ′′ αi = 1.
It follows that
∑

i∈I ′ αi pi −
∑

i∈I ′′ αi pi = 0. This provides an affine dependency between
the points ofP in contradiction with the general position assumption.

Theorem 3.1.4 (Radon, 1921). Any set of d +2 points in Rd admits a Radon partition.
Moreover, if the d +2 points are in general position any two of them are in the same part
if and only if they are separated by the hyperplane spanned by the remaining d points.
In particular, the Radon partition is unique.

PROOF. Any d +2 points, sayP = {p1, p2, . . . , pd+2}, must be affinely dependent in
Rd . We can thus find real numbers α1,α2, . . . ,αd+2, not all zero, such that

∑d+2
i=1 αi = 0

and
∑d+2

i=1 αi pi = 0. Let I+ := {i ∈ [d + 2] | αi ≥ 0} and I− := {i ∈ [d + 2] | αi < 0}.
Then,
∑

I+
αi =
∑

I−
−αi and denoting the common sum by A we derive the two convex
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combinations
∑

I+
(αi/A)pi =
∑

I−
(−αi/A)pi . It follows thatP = {pi }i∈I+ ∪ {pi }i∈I− is a

Radon partition of {pi }i∈[d+2].
Suppose thatP is in general position and consider a Radon partitionP =P ′∪P ′′.

Let p , q ∈P and let H be the affine hull of the remaining pointsP \{p , q }. By general
position, H is a hyperplane that does not contain p nor q . By Lemma 3.1.3 applied to
P \{p , q } in H , the convex hulls Conv (P ′ \{p , q }) and Conv (P ′′ \{p , q }) are disjoint.
If p and q are in a same part, then they must be separated by H . Otherwise, ConvP ′
and ConvP ′′ would also be disjoint, contradicting thatP ′ ∪P ′′ is a Radon partition.
Conversely, if p ∈ P ′ and q ∈ P ′′, then they must lie on the same side of H since
otherwise ConvP ′ and ConvP ′′ would be disjoint, again contradicting thatP ′∪P ′′
is a Radon partition.

Corollary 3.1.5. Let P be a set of d + 2 points in Rd , not all on a same hyperplane.
There exists a hyperplane H that contains d of the points inP and such that the two
remaining points are on the same side of H , i.e. contained in the same component of
Rd \H .

PROOF. By induction on the dimension d . The base case d = 1 is trivial and left
to the reader. If d > 1, first suppose that P is in general position. By the previous
theorem,P has a (unique) Radon partition. Choose one point in each part and take
for H the affine hull of the remaining points. Then H has the required properties by
the same previous theorem.

IfP is not in general position, there must be a hyperplane K that contains a subset
Q of d +1 points ofP . Let p be the remaining point inP \Q. Note that the points
in Q cannot lie on a same (d − 1)-plane. For otherwise, P would be contained in
a hyperplane. By induction applied to Q in K , there is a (d − 1)-plane L in K that
contains d −1 of the points inQ such that the two remaining points ofQ are on the
same side of L . Taking for H the affine hull of L ∪{p}, we obtain a hyperplane with
the required properties.

3.1.3 From chirotopes to oriented matroids

LetP = {p1, . . . , pn} be a set of n points in Rd . Recall that its chirotope χ returns for
every (d +1)-tuple I ∈ [n ]d+1 the orientation χ(I ) ∈ {−1, 0, 1} of the d -simplex spanned
by the vertices ofP indexed by I . The fact thatP is a subset of a d dimensional affine
space imposes some relations between the signs of its chirotope.

Theorem 3.1.6. The chirotope χ of a set of n points in Rd is alternating and satisfies
the following conditions.

• C-GP: For all I = (i0, i1, . . . , id+1−1) ∈
� [n ]

d+2

�

and J ∈
�[n ]

d

�

the set of signs

{(−1)sχ(I − is )χ(J + is )}s=0,...,d+1

either contains {−1, 1}, or is reduced to {0}.
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• C-R: For all I = (i0, i1, . . . , id+1−1) ∈
� [n ]

d+2

�

the set of signs

{(−1)sχ(I − is )}s=0,...,d+1

either contains {−1, 1}, or is reduced to {0}.

PROOF. Let P = {p1, . . . , pn} be a set of n points in Rd . The definition of their
chirotope as the sign of a determinant shows that it is indeed alternating. Put vi =
�

1
pi

�

∈Rd+1 and let V = (v1, . . . , vn ). From the very definitions we see that the chirotope

χ ofP coincides with the signs of the homogeneous Plücker coordinates (mK )K ∈( [n ]d+1)
of V :

∀K ∈
�

[n ]
d +1

�

:χ(K ) = sign(mK )

The Grassman-Plücker relations (3.2) in Theorem 3.1.1 implies that either all terms in
∑d+1

s=0 (−1)s mI−is
m J+is

are zero or two terms are non-zero with opposite signs. Condi-
tion C-GP follows.

For Condition C-R, we first remark that whenPI = {pi0
, . . . , pid+1

} is contained in a
hyperplane, then the chirotope cancels on all (d +1)-tuples of indices in I and thus
satisfies C-R. Otherwise, we may apply Corollary 3.1.5 to find two points pi j

, pik
inPI

such that

det(vi j
, vi0

, . . . ,cvi j
, . . . ,cvik

, . . . , vid+1
) = det(vik

, vi0
, . . . ,cvi j

, . . . ,cvik
, . . . , vid+1

) (3.3)

and this quantity is nonzero. By the alternating property of the determinant we have

det(vi j
, vi0

, . . . ,cvi j
, . . . ,cvik

, . . . , vid+1
) = (−1) j det(vi0

, . . . , vi j
, . . . ,cvik

, . . . , vid+1
)

and

det(vik
, vi0

, . . . ,cvi j
, . . . ,cvik

, . . . , vid+1
) = (−1)k−1 det(vi0

, . . . ,cvi j
, . . . , vik

, . . . , vid+1
)

reporting in (3.3), we get that

(−1) j det(vi0
, . . . , vi j

, . . . ,cvik
, . . . , vid+1

) =−(−1)k det(vi0
, . . . ,cvi j

, . . . , vik
, . . . , vy id+1)

It ensues that (−1) jχ(I−i j ) and (−1)kχ(I−ik )have opposite signs and are both nonzero,
so that C-R holds in all cases.

The pair ([n ],χ), where χ : [n ]d+1 → {−1,0,1} is an alternating map satisfying the
condition of Theorem 3.1.6, is called an affine oriented matroid of rank d +1. χ is the
chirotope of this oriented matroid. Any set of points in Rd whose chirotope coincides
with χ is a realization of χ .
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3.2 Linear embeddings and immersions

Recall that a linear mapping of a simplicial complex K into Rd is entirely determined
by the image of the vertices of K . It is an embedding if it induces an injective map
|K | ,→Rd . For an immersion we only require that this map is locally injective, which
amounts to ask that the restriction of the map to the star of each vertex is injective. Here,
the star of a vertex of K is the subcomplex comprising all the simplices containing
that vertex and all their faces.

Lemma 3.2.1. A linear map f : K → Rd is an embedding if and only if every pair of
disjoint simplices in K is sent to disjoint simplices inRd . It is an immersion if and only
if the previous condition holds locally, i.e., f sends every pair of disjoint simplices in the
star of a vertex to disjoint simplices in Rd .

PROOF. The conditions in the lemma are trivially necessary. Suppose that the
condition for f to be an embedding holds. We first claim that the restriction of f to
each simplex [v0, . . . , vk ] ∈ K is injective. Otherwise, f (v0), . . . , f (vk )must span a flat
(affine subspace) of dimension at most k−1. By Radon’s theorem 3.1.4 we can partition
the f (vi ) in two subsets whose convex hulls intersect. The corresponding subsets of
vi define two disjoint faces of [v0, . . . , vk ]whose images have a common intersection.
This is however in contradiction with the embedding condition in the lemma.

Now, by way of contradiction, consider two points x ≠ y in |K | such that f (x ) =
f (y ). Letσ,τ ∈ K be the supporting simplices of x and y , respectively. By the previous
claim and the embedding condition,σ and τmust have a common face different from
both σ and τ. Let {ui }i∈I be the vertices of that face, and let {v j } j∈J and {wk}k∈K be
the remaining vertices ofσ and τ, respectively. We have x =

∑

I αi ui +
∑

J β j v j and
y =
∑

I α
′
i ui+
∑

K γk wk for some positive coefficientsαi ,β j ,α′i ,γk with
∑

I αi+
∑

J β j =
∑

I α
′
i +
∑

K γk = 1. Set I+ = {i ∈ I |αi >α
′
i } and I− = {i ∈ I |αi <α

′
i }. We deduce from

f (x ) = f (y ) that
∑

I+
(αi − α′i ) f (ui ) +

∑

J β j f (v j ) =
∑

I−
(α′i − αi ) f (ui ) +

∑

K γk f (wk ).
Remarking that

∑

I+
(αi −α′i ) +
∑

J β j =
∑

I−
(α′i −αi ) +
∑

K γk and denoting by A the
common positive sum, we obtain after dividing by A two convex combinations of
{ui }i∈I+∪{v j } j∈J on one side and of {ui }i∈I−∪{wk}k∈K on the other side whose image by
f coincide. This again contradicts the embedding condition. It follows that the linear
extension of f is indeed injective. The second part of the lemma is proved similarly,
working separately in the star of each vertex.

Lemma 3.2.2. If a simplicial complex K has a linear embedding intoRd , then it has a
linear embedding sending the vertices to a pointset in general position inRd . The same
holds, replacing embedding by immersion. Moreover, one may enforce that the image
vertices have rational coordinates.

PROOF. By the previous lemma, being an embedding or an immersion is ensured by
a finite set of open conditions, namely the existence of a separating hyperplane for the
images of pairs of disjoint simplices. It ensues that any sufficiently small perturbation
of the vertex images preserves the property of being an embedding or an immersion.
In particular, one may require that the image vertices are in general position and that
all their coordinates are rational.
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3.2.1 A certificate of non-embeddability

Suppose that a simplicial complex K has a linear embedding f : K → Rd . Let V =
{vi }i∈I be the vertices of K . By Lemma 3.2.2, we can assume that f (V ) is in general
position. In other words, the chirotope χ : I d+1→{−1, 0, 1} of f (V ) does not cancel on
�

I
d+1

�

. An oriented matroid with such a chirotope is said uniform. We shall also say
that the chirotope itself is uniform. Lemma 3.2.1 provides a simple criterion for f to
be an embedding. This criterion turns out to be encoded in the chirotope of f (V ) as
stated in the next Corollary 3.2.4.

Lemma 3.2.3. Letσ,τ be two intersecting simplices inRd such that dimσ+dimτ> d .
Then, we can find a face ofσ and a face of τ that intersect and whose dimensions add
up to exactly d .

PROOF. We first make two simple observations.

1. Let H be a flat intersecting a set S in a Euclidean space. Then, the boundary
points of H ∩S in H (it is all of H ∩S if its interior in H is empty) are contained
in the boundary of S .

2. If two sets intersect in a Euclidean space, then one of the two intersects the
boundary of the other one.

Let k = dimσ and ℓ = dimτ. We prove the lemma by induction on k + ℓ. Denote
by H the intersection of the affine hulls of σ and τ. Then, σ∩H and τ∩H are two
intersecting convexes in H . If one of them, sayσ∩H , has empty interior in H , then
by observation (1) applied in the affine hull ofσ, it is included in the boundary ofσ.
It follows that a proper faceσ′ ofσ intersects τ. Replacingσ′ by a larger face ofσ if
necessary, we may assume that dimσ+ ℓ > dimσ′+ ℓ ≥ d . We can thus invoke the
induction to conclude. If bothσ∩H andτ∩H have nonempty interior in H , then their
intersection contains a boundary point of one of them, sayσ∩H , by observation (2). By
observation (1) this boundary point is also in the boundary ofσ and we may conclude
as in the previous case.

Corollary 3.2.4. Let K be a simplicial complex of dimension at most d with vertex set
[n ]. Consider a map f : [n ]→Rd such that f ([n ]) is in general position and denote its
chirotope by χ : [n ]d+1→{−1, 0, 1}. Then f linearly extends to an embedding f : |K | →
Rd if and only if the following condition is satisfied.

• C-E: for all I ∈
� [n ]

d+2

�

, the subsets

I+ := {i ∈ I | (−1)iχ(I − i )}= 1 and I− := {i ∈ I | (−1)iχ(I − i ) =−1}

are not the vertex sets of a pair of simplices in K .

A similar condition C-I characterizes immersions, where we only ask that I +, I − are not
the vertex sets of a pair of simplices in the star of some vertex in K .
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PROOF. From Radon’s theorem 3.1.4 and looking at the proof of Condition C-R in
Theorem 3.1.6, it is easily seen that f (I+)U f (I−) defines the unique Radon partition
of f (I ). In particular, Conv f (I+) and Conv f (I−) intersect. Condition C-E is thus
necessary for the extension of f to be an embedding. Conversely, assume that C-E
holds. Consider two disjoint simplicesσ,τ ∈ K . If dimσ+dimτ< d then f (σ) and
f (τ) are disjoint by the general position hypothesis. If dimσ + dimτ ≥ d we also
claim that f (σ) and f (τ) are disjoint. Otherwise, by Lemma 3.2.3 we can assume that
dimσ+dimτ= d . Let I be the concatenation of the vertices ofσ andτ. Then, I ∈

� [n ]
d+2

�

and the uniqueness of the Radon partition for f (I ) implies that {I+, I−}= {σ,τ}. This
would however be in contradiction with condition C-E. It follows that every pair of
disjoint simplices in K is sent by f to disjoint simplices in R d . Lemma 3.2.1 implies
that f indeed defines an embedding. A similar proof holds for Condition C-I on
immersions.

The previous theorem, together with Lemma 3.2.2 and Theorem 3.1.6 have the fol-
lowing consequence. If K has a linear embedding in Rd , then there should exist a
uniform chirotope admissible for the embedding of K , i.e., satisfying conditions C-GP,
C-R and C-E. The existence of an admissible chirotope is purely combinatorial and
only depends on d and K . It can thus be checked by a computer. If no admissible
chirotope is found then we can claim that K has no linear embedding inRd . A brute
force algorithm would try all maps

� [n ]
d+1

�

→ {−1,1} to see if one satisfies conditions

C-GP, C-R and C-E. The number of possible maps, 2(
n

d+1), is already far too large, not to
mention the tests for conditions C-GP, C-R and C-E, to be tractable in practice, except
for very small complexes.

3.2.2 Linear embedding of surfaces

A finite simplicial surface is a simplicial complex S whose carrier |S | is a compact
two dimensional manifold. Equivalently, every simplex of S should be a face of a
triangle in |S | and every edge should be a face of at most two triangles. One says that S
triangulates |S |, or is a triangulation of |S |. Recall that every simplicial surface embeds
linearly in R5. It follows from their classification that all orientable surfaces can be
obtained from the connected sum of a sphere, possibly with boundary, with a certain
number of tori. In particular, all orientable surfaces have a topological embedding into
R3. In fact, the method of Burago and Zalgaller described in the first lecture shows that
all orientable surfaces have a PL embedding inR3. The answer becomes less trivial if
one asks for the linear embedding intoR3 of a specific triangulation of a surface. Until
a counterexample was found in 2000, it was not known whether all simplicial surfaces
could be linearly embedded in 3-space. Here are some known facts.

• It follows from a celebrated theorem of Steinitz (1922) that all triangulations of
a sphere have a linear embedding into R3. In fact, each such triangulation is
the boundary complex of a convex polyhedron in R3. See [Zie95, Chap. 4] for a
proof.

• Archdeacon et al. [ABEM07] proved that all triangulations of the torus can be
linearly embedded into R3. In particular, the toroidal triangulation with the
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smallest number of vertices, the so-called Möbius torus, has many linear em-
beddings. The 1-skeleton of this triangulation is the complete graph K7 on 7
vertices. The first known linear embedding of the Möbius torus, due to Császár
(1949), is shown Figure 3.1. Bokowski and Eggert [BE91] have listed all the 72

5

6
1 1

7 7

77 3

3

2 2

4

4

Figure 3.1: Left, layout of the Möbius torus. Right, Császár’s linear embedding. The
vertex coordinates are, in order :
(3,−3, 0), (−3, 3, 0), (−3,−3, 1), (3, 3, 1), (−1,−2, 3), (1, 2, 3), (0, 0, 15)

admissible uniform chirotopes of the Möbius torus (up to an automorphism of
the triangulation) and they were able to exhibit realizations for each of them.

• For higher genus, there exists simplicial orientable surfaces without any linear
embedding in R3. All the results in this direction were proved with the help of a
computer to check that some specific triangulation had no admissible chirotope.
For instance, Altshuler et al. [ABS96] proved that a certain simplicial surface of
genus 6 with 12 vertices has no admissible chirotope. Using a more efficient
heuristic to explore the set of chirotopes Schewe [Sch10] proved that none of
the 59 genus 6 triangulations with 12 vertices has an admissible chirotope. He
proved a similar result for a triangulation of genus 5 with one triangle removed.
As a consequence, any triangulation obtained from a connected sum along this
triangle cannot be realized intoR3. Similar nonrealizability results were obtained
only asking for immersions rather than embeddings.

3.3 Deciding linear embeddability

The preceding approach, based on chirotopes, does not always allow to decide when
a simplicial complex K is linearly embeddable in some Ed . Even if K has an admis-
sible chirotope, we still have to exhibit an actual embedding, or prove that no such
embedding exists in order to conclude. The conditions for this existence happens
to be dictated by a set of polynomials inequalities. Indeed, assuming that K has an
admissible chirotope χ all what we need to find is a set of points in Ed , one for each
vertex of K , such that the corresponding chirotope is equal to χ . Now, the chirotope
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of the set of points is given by sign conditions on determinants (see (3.1)) which are
polynomials in the coordinates of the points.

In fact, it is not necessary to know in advance an admissible chirotope to express
that K has a linear embedding. By Lemma 3.2.1, it is equivalent to look for a set of
points {p1, p2, . . . , pn}, corresponding to the vertices i ∈ [n ] of K , such that every pair
of disjoint simplices ([i0, i1, . . . , ik−1], [ j0, j1, . . . , jℓ−1]) in K is sent to non-intersecting
simplices in Ed . This condition can be rephrased as the existence of a hyperplane
separating [pi0

, . . . , pik
] and [pj0

, . . . , pjℓ]. In other words, there should exist coefficients

c0, c1, . . . , cd−1 such that the hyperplane equation c0+
∑d

i=1 ci xi evaluates positively on
pi0

, . . . , pik
and negatively on pj0

, . . . , pjℓ . Hence, by introducing new variables ci , we are
again reduced to the satisfiability of a set of polynomials inequalities.

A subset of Rd defined by polynomials inequalities is said real semi-algebraic.
Deciding linear embeddability thus reduces to decide whether a real semi-algebraic
set is nonempty. Decision problems that reduce (in a sense to be defined) to the
(non)vacuity of a real semi-algebraic1 set are known as decision problems for the
existential theory of the reals. The existential theory of the reals thus defines a com-
plexity class that turns out to lie somewhere between the classes NP and PSPACE. In
particular, the existential theory of the reals is decidable. In order to make sense out of
these claims we need to recall some basic definitions from the theory of computation.

3.3.1 Turing machines and complexity

This section is intended to be a crash introduction to computational complexity. The
following notes are greatly inspired by Avi Widgerson [Wig06].

Turing machines

The most popular model of computation was introduced by Alan Turing in 1936. It
was proved equivalent to other notions of computation such as recursive functions
or λ-calculus. Formally, a Turing machine is a triple (A ,Q,T ), whereA is a finite
alphabet including a special blank character denoted by ;,Q is a finite set of states,
and2 T ⊂A ×Q×A ×Q×{R , L} is a transition table specifying how the machine
operates on configurations. Those are words of the form uq v ∈A ∗×Q×A ∗, where
A ∗ denotes the set of words (i.e., finite sequences) overA . Intuitively, the machine
can be represented by a linear tape composed of a bi-infinite sequence of cells that
each contains one alphabet symbol, and by a read/write head pointing to one cell and
containing the machine state. Configuration uq v then corresponds to a tape marked
with the word u v and otherwise with blanks and whose read/write head points to
the first letter in v (the empty word is interpreted as a blank). Transition a q b p D ∈T
applies to any configuration uq v such that a is the first letter in v . It transforms uq v
replacing a with b , the state q by p , and moves the head one step to the left or right
according to whether D equals L or R , respectively.

1Here, we are only interested in systems of polynomials with integer (equivalently, rational) coeffi-
cients.

2In these notes, we use the symbol ⊂ to indicate the subset relation, not necessarily proper.
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c o pm u t e r0 0

q
c o mm u t e r0 0

q'

Figure 3.2: Illustration of the transition pqmq ′R applied to configuration comqputer
on a Turing machine operating on the Latin alphabet.

A Turing machine is deterministic if at most one transition applies to a given con-
figuration: a q b p D ∈ T and a q b ′p ′D ′ ∈ T implies b ′ = b , p ′ = p and D ′ =D . The
machine is halting in a given configuration when no transition applies. Usually, a
Turing machine has two special halting states interpreted as accepting and rejecting.
As opposed to a deterministic machine, a nondeterministic Turing machine may lead
to several computations starting from a same configuration.

Complexity classes

In computer science a decision problem refers to a subset of words over a fixed
alphabetA . Words in the subset are the YES instances of the problem. Intuitively,
the YES instances correspond to the encoding of objects – such as numbers, graphs,
or Boolean formulas – satisfying a certain property. For instance, one may consider
the problem of primality testing where the YES instances are the binary encoding of
prime integers over the alphabetA = {0, 1}. In full generality, a decision problem can
be any subset I ⊂A ∗. Such a subset is also called a language. A Turing machine is
said to solve or decide3 problem I if given any word w ∈ A ∗ as input, i.e., starting
with a configuration of the form q0w , where q0 is a chosen initial state, it halts in
the accepting state whenever w ∈ I and halts in the rejecting state otherwise. An
algorithm for problem I is just another name for a Turing machine solving I . The time
complexity of the computation on input w is the number of transitions needed to
reach a halting state. The space complexity is the maximum length of a configuration
during the computation.

Polynomial and exponential classes. An algorithm has polynomial time complexity
if for every n ∈N and every input of length n the computation on this input has time
complexity at most p (n ), where p is a polynomial that only depends on the algorithm.
The set of problems admitting algorithms of polynomial time complexity is denoted
by P. Replacing p (n ) by 2p (n ) we obtain the class EXP of problems with exponential
time complexity. Analogously, the set of problems solved by Turing machines whose
space complexity is polynomial is denoted by PSPACE. It is believed, but not known,
that EXP ̸⊂PSPACE.

Exercise 3.3.1. Show that PSPACE⊂ EXP.

The class NP. The acronym NP stands for the class of nondeterministic polynomial
time algorithms. A problem I is in NP if there is a nondeterministic Turing machine
such that (1) given any w ∈ I as input at least one computation leads to an accepting
state in polynomial time and (2) no computation leads to an accepting state whenever

3or, referring to the language terminology, to recognize.
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w ̸∈ I . Case (2) leaves the possibility that the machine runs forever, but computa-
tions that take more than polynomial time may be discarded without affecting the
functionality of the machine, so that we can always assume that the computation
takes polynomial time in both cases (1) and (2). However, the two cases are highly
asymmetric since a computation leading to a rejecting state does not say anything
about the input. There is another useful definition of the class NP in terms of efficiently
verifiable certificate. A problem I is in NP if there is a deterministic Turing machine
with polynomial time complexity, the verifier, such that (a) for every w ∈ I there exists
c ∈A ∗ so that the verifier accepts w c in polynomial time and (b) if w ̸∈ I the veri-
fier rejects w c whichever c we choose. Hence, c acts as a certificate, or efficiently
verifiable proof for being a YES instance.

Theorem 3.3.2. The two definitions of the class NP by means of nondeterministic
machines or in terms of certificates and deterministic verifiers are equivalent.

PROOF. Suppose that a language I is recognized by a nondeterministic machine
M in polynomial time. An input word w determines a directed rooted tree of compu-
tations where each node corresponds to a configuration of M and the children of a
configuration node correspond to the various transitions that apply to that configura-
tion. The degree of a node is bounded by a constant, namely the size of the transition
table of M . A computation path in this tree is easily encoded as the list ℓ of branching
choices at the nodes along the path. By assumption, ℓ has polynomial size and may
serve as a certificate. We can define a verifier V that takes the concatenation w ℓ (with
some predefined separator) as input and essentially simulates the computation of
M on w guided by ℓ. The successive branching choices in ℓ allow V to maintain the
current configuration of M determined by those choices. The main task of the verifier
is thus to check that each branching choice corresponds to an actual transition of M
that applies to the current configuration. Clearly, V operates in polynomial time and
w ∈ I if and only if we can choose ℓ so that the simulation leads to an accepting state
of M . We have thus proved that I is in NP according to the second definition.

Conversely, suppose that every word in I has a certificate verifiable by a polyno-
mial time Turing machine V . We define a nondeterministic machine M operating in
two stages. In the first stage, M guesses a certificate with polynomial length. In the
second stage, M simulates V deterministically on the input word concatenated with
the guessed certificate. The nondeterminism of M is thus concentrated in the first
stage. It is easily seen that M recognize I as a member of NP in the sense of the first
definition.

Exercise 3.3.3. Show that NP⊂PSPACE.

Reduction and completeness

The notion of reduction allows to compare the difficulty of different problems. Given
two problems I , J ⊂A ∗, we say that I reduces (in polynomial time) to J , written I ≤ J ,
if there is a function r :A ∗→A ∗, computable by a Turing machine with polynomial
time complexity, such that I = r −1(J ). In other words, r transforms YES and NO
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instances of the first problem to, respectively, YES and NO instances of the second
problem4. Hence, I ≤ J and J ∈P implies I ∈P. This is obviously true replacing P by
any other larger complexity class. If I reduces to J and J to K , it is easily seen I reduces
to K . The reduction relation is thus a preorder (i.e., a reflexive and transitive relation).
Any problem which is an upper bound for a complexity class C is said C-hard. It is said
C-complete if it furthermore belongs to C. A C-complete problem is thus a hardest
representative in C. It is a priori not clear whether a complexity class has complete
problems.

Exercise 3.3.4. Show that every non-trivial problem (proper subset of A ∗) in P is
P-complete.

It turns out that the class NP has complete problems, among which the satisfiability
problem. A Boolean formula is a logical expression over Boolean variables connected
by the usual ∧,∨,¬ operators. A formula is satisfiable if there is an assignment of
its variables that makes the formula evaluate to true. The problem SAT is the set of
satisfiable formulas encoded, say, over the alphabet {0, 1,∧,∨,¬, (, )}.

Theorem 3.3.5 (Cook’71 - Levin’73). SAT is NP-complete.

PROOF. Any truth assignment of a formula in SAT provides a certificate that is easily
checkable in polynomial time. It follows that SAT ∈NP. It remains to show that every
problem I ∈NP reduces to SAT. Let M = (A ,Q,T ) be a nondeterministic machine
solving I in polynomial time. For every instance w , we need to construct a formula
Φw so that w ∈ I if and only if Φw is satisfiable.

Number the cells of the tape once for all from left to right so that at the initial
step the tape contains w =w1w2 . . . wn with cell 1 containing w1. By assumption on
M , the number of computation steps given w as input is bounded by p (n ) for some
polynomial p , where n := |w | is the length of w . By convention, we consider that M
stays in the same configuration once in a halting state. This way we can assume that
the number of computation steps is exactly p (n ). It follows that the head of M can
only point to a cell with index in the range J := [−p (n ), p (n )]. In particular, cells with
index outside this range must contain the empty symbol. The whole computation is
thus entirely described by the content of the j th cell at the i th step (configuration)
of the computation, with 1 ≤ i ≤ p (n ) and j ∈ J , and the sequence of p (n ) states
and head positions during the computation. In accordance with this description, we
introduce Boolean variables Ci , j ,s ,Qi ,q , Hi , j with 1≤ i ≤ p (n ), j ∈ J , s ∈A and q ∈Q.
The variable Ci , j ,s is intended to be true whenever the j th cell at the i th step contains
s and false otherwise. Similarly, Qi ,q and Hi , j are intended to be true exactly when M
is in state q at step i with the head pointing to the j th cell.

We next consider the following Boolean formulas. We recall that A =⇒ B is a
shorthand for ¬A ∨B .

4This type of reduction is called many-one, or Karp reduction. Polynomial-time Turing reduction,
also known as Cook reduction, is another common notion of reduction, where I reduces to J if I can
be solved in polynomial time by a Turing machine with an oracle for J , meaning that the machine is
allowed to call a subroutine for problem J at anytime during the computation, in constant time for
each call.
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• φi , j =
∨

s∈A
(Ci , j ,s ∧ (
∧

t ̸=s

¬Ci , j ,t )) expresses that the j th cell at the i th step takes one

and only one value.

• φi =
�
∨

q∈Q
(Qi ,q ∧ (
∧

r ̸=q

¬Qi ,r ))
�

∧
�
∨

j∈J

(Hi , j ∧ (
∧

k ̸= j

¬Hi ,k ))
�

expresses that the state and

head position each take exactly one value at the i th step.

• φb =
∧

1≤ j≤n

C1, j ,w j
∧
∧

j ̸∈[1,n ]

C1, j ,;∧Q1,q0
∧H1,1 expresses that the initial tape contains

the input w and that M is in the initial state q0 with the head pointing to the
first symbol of w .

• φe =Qp (n ),qa
, where qa is the accepting state, expresses that M accepts w .

• ψi =
∧

j∈J
s ̸=t

�

(Ci , j ,s ∧Ci+1, j ,t ) =⇒ Hi , j

�

expresses that only the cell pointed by the

head may change from step i to i +1.

• ψi , j ,q ,s = (Qi ,q ∧Hi , j ∧Ci , j ,s ) =⇒
∨

s q t r D∈T
(Qi+1,r ∧Hi+1, j+D ∧Ci+1, j ,t ) expresses that

when M is in state q at step i with the head pointing to the j th cell containing s ,
only the relevant transitions may apply. Here, j +D is j −1 or j +1 depending
on whether D = L or D =R .

We finally set Φw =
∧

i , j φi , j ∧φb ∧φe ∧
∧

iψi ∧
∧

i , j ,q ,sψi , j ,q ,s . To conclude, it remains
to notice that the description of the formula Φw can be computed in polynomial
time (with respect to n) and that Φw is satisfiable if and only if M recognizes w , i.e.
w ∈ I .

3.3.2 Existential theory of the reals

We are now ready to characterize the complexity of the linear embedding problem.
Given as input an abstract simplicial complex K and a dimension d , the problem is
to decide if K has a linear embedding into Rd . As we shall see this problem can be
reduced in polynomial time to test the non-emptiness of a semi-algebraic set defined
by polynomials with integer coefficients.

Semi-algebraic set. An atomic formula may have one of two forms {p = 0} or {p > 0},
where p is a polynomial in a finite number of variables, with integer coefficients. A
predicate Φ(X1, . . . , Xd ) in the language of fields with integer coefficients is a Boolean
predicate applied to atomic formulas using the free variables X1, . . . , Xd . In other
words,Φ(X1, . . . , Xd ) can be obtained recursively from atomic formulas using the logical
connectors ∧,∨ and ¬. A semi-algebraic set over the integers is any set of the form

{x = (x1, . . . , xd ) ∈Rd |Φ(x )}

with Φ a predicate as above. An existential formula is a proposition of the form

∃x ∈Rd |Φ(x )
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Deciding the falsity or truth of an existential formula is thus the same as deciding if a
semi-algebraic set is empty or not. The set of problems that reduces in polynomial
time to deciding the status of existential formulas has been gathered under the name
of existential theory of the reals. This complexity class is denoted by ∃R.

Lemma 3.3.6. NP⊂ ∃R.

PROOF. By Theorem 3.3.5 of Cook and Levin, it is enough to prove that SAT reduces
to ∃R. Let Φ(X ) be a Boolean formula with variables X = (X1, . . . , Xd ). Using the dis-
tributivity rules of negation over disjunction and conjunction we can assume that the
negations in Φmay only apply to the atomic variables X i . Let Y = (Y1, . . . , Yd ) be free
variables, we recursively define a polynomial PΦ(Y ) using the formulas: PX i

(Y ) = Yi ,
P¬X i
(Y ) = 1−Yi , PΦ1∧Φ2

= PΦ1
(Y )×PΦ2

(Y ) and PΦ1∨Φ2
= PΦ1

(Y ) +PΦ2
(Y ). We now consider

the existential formula defined by the conjunction of the following predicates.

• Y 2
i −Yi = 0, i = 1 . . . d .

• PΦ(Y )> 0.

Noting that Y 2
i −Yi = 0 implies Yi ∈ {0, 1}, it is easily checked that Φ(X ) can be satisfied

if and only if the above existential formula defines a nonempty semi-algebraic set.
Moreover, a description of the existential formula can be obtained in time proportional
to the length of the description of Φ, thus providing the required reduction.

A much more challenging task is to provide an upper bound on the complexity of
∃R. The first approach to decide the vacuity of a system of polynomials (in)equations
used the cylindrical decomposition of Collins (1975). This cylindrical decomposition
includes a decomposition of Rk , where k is the number of variables in the system,
into semi-algebraic cells such that each polynomial in the system has a constant sign
−,0 or + over each cell. Hence, the system has at least one solution if we can find
one cell in the decomposition such that the sign of each polynomial agrees with the
corresponding (in)equality in the system. The best known computation of such an
adapted decomposition takes time O (s d 2k )where s is the number of polynomials in
the system and d is their maximal degree. The cylindrical decomposition approach
thus leads to a doubly exponential time algorithm. It was eventually shown that ∃R
could be solved using polynomial space only [Can88, Ren88].

Theorem 3.3.7 (Canny’88). ∃R⊂PSPACE

The proof of this result is far beyond the purpose of this lecture. Describing all
the details takes a whole thick book [BPR06]. There are excellent surveys [Bas14,
RRSED00] that can serve as introductory lectures. An important step is to decide the
(non)emptiness of a real algebraic set defined by a systemS of polynomial equations.
The main idea is to augment S with other polynomial conditions so that the new
system has only a finite number of solutions, a so-called zero-dimensional system,
with at least one solution in each (semi-algebraically) connected component defined
by S . Those solutions can even be returned implicitly using rational univariate
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representations. This is done by searching for the critical points of a given functional
(e.g. the squared distance to a fixed point) over the algebraic set. For this method to
work it is required that the critical points are non-singular and that the components are
bounded. One way to enforce these conditions is to use symbolic perturbations. They
are obtained by introducing new variables playing the role of infinitesimals, replacing
equations of the form P = 0 by P = ϵ, for ϵ an infinitesimal. Other modifications may
be introduced to take care of the unbounded components leading to a new system
of polynomial equations whose coefficients are now polynomials in the infitesimals.
After solving the modified system, it remains to substitute zero for the infinitesimals to
obtain real solutions. A huge amount of techniques from real algebraic geometry are
necessary, such as the use of resultants, root counting, Gröbner basis computations,
etc. In the end, it can be proved that the emptiness of a semi-algebraic set defined
by a system of polynomial (in)equations can be decided using polynomial space, in
terms of the size of the encoding of the system. Only a few implementations seems to
exist and are hardly able to deal with more than a dozen variables with polynomials of
relatively low degree.

Exercise 3.3.8. Show that the emptiness of a semi-algebraic set defined by polynomial
(in)equations can be reduced to the emptiness of an algebraic set defined by poly-
nomial equations. Show that you can furthermore impose that the algebraic set is
defined by a single polynomial equation.

Linear embeddability belongs to ∃R

In the introduction to Section 3.3 we already observed that the embeddability of a
simplicial complex K could be reduced to the satisfiability of a set of polynomial
inequalities. We still need to check that this reduction takes polynomial time. Recall
that we have to encode the conditions that pairs of disjoint simplices are sent to non-
intersecting simplices in Rd . The transcription into polynomials of those conditions
for each pair of simplices just claims the existence of a separating hyperplane and
clearly takes polynomial time. There still remains the potential problem that the
number of simplices, hence the number of polynomials conditions, is very large
compared to the encoding of K . A reasonable encoding should indeed only records
the maximal simplices of K — those that are not a face of larger simplices — the other
simplices being implicitly encoded as faces of the maximal ones. For instance, if |K |
is an m-dimensional simplex, its total number of faces is 2m+1 while its encoding is
essentially the single set [m +1]. Nonetheless, since m ≤ d is an obvious condition for
embeddability in Rd , we are led to conclude that

Theorem 3.3.9. The linear embedding problem intoRd is in ∃R for any fixed dimension
d .

The question raised by the potentially large number of polynomial conditions can
be dealt with at the expense of getting larger polynomials. We can indeed replace the
conditions in Lemma 3.2.1 by a smaller number of conditions. To see this, we first
make a simple observation.
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Lemma 3.3.10. Letσ,τ be two simplices inRd intersecting along a common face. There
exists a hyperplane intersecting each of σ,τ along their common face and otherwise
separating them.

PROOF. Let {ui }i∈I be the vertices of the common face, and let {v j } j∈J and {wℓ}ℓ∈L

be the remaining vertices of σ and τ, respectively. Let uσ,ϵ
i := (1 − ϵ)ui + ϵv j0

for
some fixed j0 ∈ J . Likewise, let uτ,ϵ

i := (1− ϵ)ui + ϵwℓ0
for some ℓ0 ∈ L . For 0 < ϵ < 1,

σϵ :=Conv ({uσ,ϵ
i }i∈I ∪{v j } j∈J ) andτϵ :=Conv ({uτ,ϵ

i }i∈I ∪{wℓ}ℓ∈L ) are disjoint compact
convexes, hence separated by a hyperplane Hϵ defined by a unit normal vector νϵ and
a point uϵ, say between uσ,ϵ

1 and uτ,ϵ
1 . As ϵ tends to zero, νϵ and uϵ converge toward

a vector ν0 and a point u0 defining a hyperplane H0. It is easily seen that H0 has the
required property.

With some abuse of terminology we still call the hyperplane as in Lemma 3.3.10 a
separating hyperplane for (σ,τ).

Corollary 3.3.11. The embedding conditions in Lemma 3.2.1 can be replaced by the
following: (1) the vertices of each maximal simplex of K are sent to affinely independent
points in Rd and (2) for every pair of distinct maximal simplices of K , there exists a
separating hyperplane in the sense of the previous lemma.

PROOF. Condition (1) is trivially necessary for any linear embedding. Lemma 3.3.10
implies that condition (2) is also necessary. Conversely, suppose that a linear map
f : K → Rd satisfies (1) and (2). Let σ,τ be to disjoint simplices of K . σ and τ are
faces of two maximal simplices, sayσ′ and τ′ respectively. On the one hand, ifσ′ =τ′,
condition (1) implies thatσ,τ are sent to disjoint faces of a non-degenerate simplex
inRd . On the other hand, ifσ′ ̸=τ′, condition (2) implies the existence of a separating
hyperplane for (σ′,τ′) providing a separating hyperplane for (σ,τ). In any case,σ and
τ are sent to non-intersecting simplices in Rd , showing that f is an embedding by
Lemma 3.2.1.

By Corollary 3.3.11 we just need a number of polynomial conditions that is quadratic
in the number of maximal simplices. Beware, though, that condition (1) is expressed
by the non-cancellation of determinants that may contain up to d ! terms. The poten-
tial benefit of this approach in terms of the number of polynomials should thus be
balanced with the increase in the size of the polynomials.
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