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1 What Is a Graph?

Graphs are among the most ubiquitous objects in Computer Science. Still, there might
be as many formal definitions of a graph as there are books on the subject. This is
even the case in the more formalized subfield of algebraic graph theory. For instance,
Biggs starts his book on algebraic graph theory [Big94]with

Basic definitions and notations

Formally, a general graph Γ consists of three things: a set V Γ , a set E Γ
and an incidence relation, that is, a subset of V Γ ×E Γ . An element
of V Γ is called a vertex, an element of E Γ is called an edge, and the
incidence relation is required to be such that an edge is incident with
either one vertex (in which case it is a loop) or two vertices.
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While Godsil and Royle [GR01] begin with

1.1 Graphs

A graph X consists of a vertex set V (X ) and an edge set E (X ), where an
edge is an unordered pair of distinct vertices of X .

We advocate the following universal definition (see e.g. [Ser77, Sec. 2.1])

Definition 1.1. A graph is a quadruple G = (V , A, o , ι)where

• V is a set whose elements are called vertices,

• A is a set whose elements are called (oriented) arcs,

• o : A→V is a map that sends each arc a to its origin vertex o (a ).

• ι : A→ A is a fixed point free involution that sends each arc to is inverse arc. We
usually write a−1 for ι(a ).

The origin is also called the tail of an arc and the inverse is called the opposite.

A (non-oriented) edge is a pair {a , a−1}. The origin of a−1 is the destination, or
head, of a . The tail and head of an edge are its two endpoints to which the edge is
incident. Because ι has no fixed point the set of arcs is the disjoint union A = A+∪ι(A+)
for some A+ ⊂ A. The set of edges is thus in bijection with A+. Fixing A+ defines a
default orientation of the edges. We will assume this default orientation given once
for all for each graph in this document.

Example 1.2. A graph with a single vertex is called a bouquet of circles. The bouquet
of circles with n edges is denoted by Bn .

B4

Following Serre [Ser77] “there is an evident notion of morphisms for graphs”. Serre
defines a morphism as two maps, one between the vertex sets and one between the
arc sets, that “commute” with the origin and inverse maps. For this definition, a non-
loop edge contraction would not be a morphism. We thus find more convenient the
following slightly modified definition.
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Definition 1.3. A morphism from a graph (V , A, o , ι) to a graph (V ′, A′, o ′, ι′) is a map
f : V ∪A→V ′ ∪A′ such that f (V )⊂V ′ and f commutes with the origin and inverse
maps, i.e., f ◦o = o ′ ◦ f and f ◦ ι = ι′ ◦ f , where by convention the origin and inverse
maps are the identity on the vertex sets.

We will often denote by V (G ) and E (G ) the respective sets of vertices and edges of
a graph G . Note that the number |E (G )| of edges is half the number of arcs of G when
those numbers are finite. Subgraphs are defined in the obvious way by inclusion of
the sets of vertices and edges and by restrictions of the origin and inverse maps. Note
that the being a subgraph induces an (inclusion) morphism.

1.1 Basic operations on graphs

Let G = (V , A, o , ι) be a graph, and let e = {a , a−1} be an edge of G .

Definition 1.4. The contraction of e in G transforms G to the graph G /e = (V ′, A′, o ′, ι′)
where V ′ =V /{o (a ) = o (a−1)}, A′ = A \ e and o ′ and ι′ are the obvious restrictions of o
and ι with the identification of o (a ) and o (a−1). If e has a degree one endpoint, the
contraction is called an elementary retraction.

It is an easy exercise to check that the edge contraction is a graph morphism and
that the contractions of edges commute. See Example 1.12 below. More generally,

Definition 1.5. If E ′ = B ∪ ι(B ) is a subset of edges of G , the contraction of E ′ in G is
the graph G /E ′ = (V ′, A′, o ′, ι′)where A′ = A \ (B ∪ ι(B )) and V ′ =V /≈, where ≈ is the
transitive and reflexive closure of the relation

⋃

b∈B (o (b ), o ◦ ι(b )), and o ′ and ι′ are
defined in the obvious way.

When H is a subgraph of G we also write G /H for the contractions in G of all the
edges of H .

Definition 1.6. The deletion of an edge e of G transforms G to the graph G − e =
(V , A′, o ′, ι′) where A′ = A \ e and o ′ and ι′ are the obvious restrictions of o and ι.
Similarly, we define the deletion of a vertex v as the graph G − v with v and all the
incident edges removed.

Definition 1.7. The elementary subdivision of e in G transforms G to the graph
Se G = (V ′, A′, o ′, ι′) where V ′ = V ∪ {x }, A′ = A ∪ {a ′, a ′−1} for some new elements
x , a ′, a ′−1 not in V ∪A. The maps o ′ and ι′ are defined in the obvious way. In particular,
Se G /{a ′, a ′−1}=G . A subdivision of G is the result of a finite sequence of elementary
subdivisions.

Two graphs are combinatorially equivalent if they have isomorphic subdivisions.
Intuitively, two graphs are combinatorially equivalent if they have homeomorphic
realizations (to be defined). An invariant for graphs is a property, usually a functor, that
is invariant under combinatorial equivalence. This will be the case for the fundamental
group, the homology or cohomology groups as defined in the next sections.
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1.2 Paths and trees

Definition 1.8. A path in G is a finite alternating sequence of vertices and arcs of G of
the form (v0, a1, v1, a2, . . . , ak , vk ) such that the tail and head of ai are respectively vi−1

and vi . The vertices v0 and vk are the endpoints of the path. The integer k is the length
(or size) of the path. When k = 0, the path is said to be constant. It is denoted by 1
when the vertex v0 is implicit. The inverse path of γ = (v0, a1, v1, a2, . . . , ak , vk ) is the
path γ−1 = (vk , a−1

k , vk−1, a−1
k−1, . . . , a−1

1 , v0). A path is simple if is has no repeated vertices.
It is closed if its first and last vertex coincide. For non-constant paths, the vertices are
redundant and we usually write (a1, a2, . . . , ak ) or a1 ·a2 ·. . . ak for (v0, a1, v1, a2, . . . , ak , vk ).
A path is also called a walk and a closed path is also called a loop. The first vertex of a
loop is its basepoint. We reserve the term circuit to a closed path without fixing its
basepoint. Formally, a circuit is a class of closed paths related by circular permutations
of their arcs. A circuit is simple if all its paths are simple.

Definition 1.9. A graph is connected if every pair of its vertices can be joined by a
path in the graph. Note that we may require that the path is simple in this definition
without changing the property of being connected. A graph without simple closed
path is a forest. A connected forest is a tree.

It is easily seen from the definition that every two vertices in a tree are connected
by a unique simple path. As far as topological properties are concerned the most
fundamental properties of a graph are recorded in the next two lemmas.

Lemma 1.10. Any subtree of a graph G can be extended to a maximal subtree under
inclusion.

PROOF. This is clear if G is finite as it contains a finite number of subtrees. Other-
wise, consider the set of subtrees of G containing the given subtree, say T , ordered by
the subgraph relation (i.e., by inclusion). It is easily checked that the union of the trees
in any ascending chain of subtrees is again a subtree containing T . It thus provides
an upper bound to the ascending chain. It follows from Zorn’s lemma that the set of
subtrees of G containing T has a maximal element. This concludes the proof. A more
“constructive” proof makes use of the axiom of choice to build a shortest path tree
inductively.

A subgraph of G is spanning if is contains all the vertices in G .

Corollary 1.11. Every connected graph has a spanning tree.

PROOF. Let G be a connected graph. By Lemma 1.10, G has a maximal subtree T
extending a single vertex of G , say v . We show that T is spanning. Suppose by way
of contradiction that some vertex w of G is not a vertex of T . By connectedness of G
there is a simple path from v to w in G . Let x be the last vertex in T along this path
and let a be the arc with origin x along the path. Then, adding the edge {a , a−1} to T
we obtain a subtree of G larger than T , in contradiction with the maximality of T .
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If T is a spanning tree of the connected graph G , any edge of G that is not in T is a
chord. Note that a chord may or may not be a loop edge.

Example 1.12. If T is a subtree of a G , then there is a morphism cT : G →G /T contract-
ing the edges of T . If T is finite, cT is a composition of edge contractions. Otherwise,
G /T is a direct limit of such contractions.

Example 1.13. When T is a spanning tree, G /T is a bouquet of circles whose edges
correspond to the chords of T in G .

Example 1.14. If T is a spanning tree of the connected graph G , we denote by T [v, w ]
the unique shortest path in T from v to w . Any arc a of G determines a loop with
basepoint v :

T [v, a ] := T [v, o (a )] ·a ·T [o (a−1), v ]

and a circuit
T [a ] := a ·T [o (a−1), o (a )]

v
T

a b

Here, T [a ] = T [v, a ] but T [b ] = (b ) 6= T [v, b ].

2 Path homotopy in graphs

Definition 2.1. A spur is a subsequence of the form (a , a−1) in a path. Adding or
removing a spur in a path is called an elementary homotopy. A free elementary
homotopy is an elementary homotopy applied to any of the path representatives of a
circuit. Homotopy is the equivalence relation generated by elementary homotopies.
Likewise, free homotopy is the reflexive and transitive closure of free elementary

homotopies. We write γ∼λ if γ and λ are homotopic paths and γ
free∼ λwhen they are

freely homotopic circuits. A path is reduced if it does not contain any spur. Similarly, a
circuit without spur is said cyclically reduced. A path or circuit (freely) homotopic to
a constant path is said to be contractible. If the last vertex of a path γ coincides with
the first vertex of a path λ, their concatenation is the path γ ·λwhose arc sequence is
the arc sequence of γ followed by the arc sequence of λ.
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Note that concatenation is compatible with the homotopy relation: γ ∼ γ′ and
λ ∼ λ′ =⇒ γ · λ ∼ γ′ · λ′. Adding that γ · γ−1 ∼ 1 for all paths γ implies the next
proposition.

Proposition 2.2. Let v be a vertex of G . The set of homotopy classes of loops with
basepoint v is a group for the law of path concatenation, with the constant path for the
unity. It is called the fundamental group of G based at v and denoted by π1(G , v ). The
free homotopy classes are the conjugacy classes in this group.

Lemma 2.3. Every homotopy class has a unique reduced path. Similarly, every free
homotopy class has a unique cyclically reduced circuit.

PROOF. Let γ ∼ λ with γ and λ reduced. Choose a sequence γ = µ0 ∼ · · · ∼ µk = λ
of elementary homotopies such that the total length

∑

i |µi | is minimal. Note that
k 6= 1 since γ and λ are both reduced. If k > 1, µ1 and µk−1 are longer than γ and λ
respectively. Let i ∈ {1. . . k −1} be such that |µi | is maximal. Then, µi−1 and µi+1 are
each obtained from µi by removing a spur. The two spurs may either be disjoint or
equal, or may overlap in µi . In each case, it is a simple exercise to check that the total
length of the sequence of elementary homotopies can be reduced. This contradicts
the minimality of the chosen sequence. It follows that k = 0, so that γ=λ as desired.
The proof of uniqueness for the case of free homotopy is similar.

Exercise 2.4. Let γ be a path from a vertex v to a vertex w in G . Prove that the map
λ 7→ γ ·λ ·γ−1 taking a loop with basepoint w to a loop with basepoint v induces an
isomorphism from π1(G , w ) to π1(G , v ). What is this isomorphism when γ is a loop?

When G is connected, Exercise 2.4 allows us to speak of the fundamental group of G ,
defined up to isomorphism, without referring to its basepoint.

Proposition 2.5. The fundamental group of a bouquet of circles is a free group over its
edge set.

PROOF. Let B be bouquet of circles with arc set A. Recall that we can write A =
A+∪ι(A+), so that the set of edges can be identified with A+. We denote by F (A+) the free
group generated by A+. Since B has a single vertex •, each arc a is a loop (a ). Obviously,
the set of loops {(a )}a∈A+ generates π1(B ,•). The map a 7→ (a ) extends uniquely, by
the universal property of free groups, to a group morphism F (A+)→ π1(B ,•) that is
onto by the preceding obvious remark. Since elementary homotopies correspond to
free elementary reductions of words (of the type ua a−1v 7→ u v ), the kernel of this
morphism is trivial and π1(B ,•)' F (A+).

Remark 2.6. To keep the notations light, we will often identify a loop with its homotopy
class.



2. Path homotopy in graphs 7

The π1 functor A graph morphism f : G → G ′ can be extended to send a path,
loop or circuit (a1, a2, . . . , ak ) of G to a path, loop or circuit ( f (a1), f (a2), . . . , f (ak )) of G ′,
ignoring the f (ai ) that are vertices. This extension commutes with path concatenation,
while homotopic paths and freely homotopic circuits are sent to homotopic paths and
freely homotopic circuits respectively. It follows that

Lemma 2.7. A graph morphism f : (G , v )→ (G ′, f (v )) induces in a natural way a group

morphism f∗ : π1(G , v )→ π1(G ′, f (v )), i.e., if G
f
→G ′ g

→G ′′ are two morphisms, then
( f g )∗ = f∗g∗.

The correspondences (G , v ) 7→π1(G , v ) and f 7→ f∗ thus define a functor from the
category of connected pointed graphs to the category of groups.

Exercise 2.8. Prove that an edge contraction of a connected graph induces an isomor-
phism of fundamental groups if and only if its endpoints are distinct.

Theorem 2.9. Let T be a spanning tree of a connected graph G . For any vertex v of G ,
π1(G , v ) is isomorphic to the free group on the set of chords of T in G .

PROOF. We again write A = A+ ∪ ι(A+) for the set of arcs of G and we will freely
identify a subset of edges with a subset of A+ when convenient. We denote by C the
set of chords of T in G . We observe that any loop (a1, a2, . . . , ak ) is homotopic to the
concatenation of loops T [v, a1] ·T [v, a2] · · ·T [v, ak ] (See Example 1.14). Since T [v, a ]
is contractible whenever a is in T , we see that the family Γ = {T [v, a ]}a∈C generates
π1(G , v ). Each arc of C appears exactly once in one loop of this family. It follows
that Γ only satisfies trivial relations (of the type T [v, a ] · T [v, a ]−1 = 1) and is thus
a free generating set. Said differently, the map a 7→ T [v, a ] extends uniquely to a
morphism F (A+)→π1(G , v )whose kernel is the subgroup spanned by the edges of T .
We conclude that π1(G , v )' F (A+)/F (T )' F (C ).

Remark 2.10. From the proof, we note that a basis of π1(G , v ) is given by the loops
T [v, a ]when a runs through the chords of T in G . The expression in this basis of the
homotopy class of a loop ` is obtained as follows. We first take the trace of ` over C ,
i.e., we discard the arcs of T in `. We then freely reduce the resulting word on C ∪ ι(C ),
and finally replace each occurrence of c (resp. c −1) by T [v, c ] (resp. T [v, c ]−1).

Corollary 2.11. If G is a finite connected graph, its fundamental group is a free group
of rank

1−χ(G ) = 1− |V (G )|+ |E (G )|

PROOF. From the preceding theorem r := rankπ1(G , v ) is the number of chords of a
spanning tree T , so that r = |E (G )|−|E (T )|. But T being a tree we have |E (T )|= |V (T )|−
1 and T being spanning we have |V (T )|= |V (G )|. Whence r = |E (G )|− (|V (G )|−1).

Exercise 2.12. Let H a connected subgraph of a connected graph G and let v be vertex
of H . Prove that the inclusion H ,→G induces a monomorphism π1(H , v ) ,→π1(G , v ).
(Hint. You may use a direct proof or use Lemma 1.10.)
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3 Some Elementary Algorithms Related to Homotopy

Here, we examine how to compute a basis of the fundamental group of a finite graph
in practice, and how to decide whether a loop is contractible or whether two loops are
homotopic. We assume given a finite connected graph G = (V , A, o , ι)with a default
orientation A+ and a vertex v ∈V .

3.1 Computing a basis of π1(G , v )

By a basis we mean a minimal size set of loops whose homotopy classes generate
π1(G , v ). Note that a reduced loop (without spur) has minimal length among all its
homotopic loops.

Lemma 3.1. We can compute a basis of π1(G , v ) in time O (|A+| + r |V |) where r =
1− |V |+ |A+|.

PROOF. We already know from Corollary 2.11 that any basis has r elements. By
the remark following Theorem 2.9, such a basis is provided by the loops {T [v, a ]}, for
a a chord of a spanning tree T . The spanning tree can be computed using a graph
traversal such as depth-first search or breadth-first search in O (|A+|) time. Each of the
r loops {T [v, a ]} can be written down in time proportional to its length O (|V |).

It should be noted that a basis of π1(G , v ) does not necessarily arise from the chords of
a spanning tree. However, a shortest basis – that is a basis minimizing the total length
of its loops – indeed arises this way. To see this we state a preliminary lemma.

Lemma 3.2. Let F be a free group over (x1, x2, . . . , xn ). For any base (u1, u2, . . . , un ) of F
there exists a permutationσ of [1, n ] such that each xi appears in the reduced expression
of uσ(i ) in terms of the x j .

PROOF. The automorphism of F defined by xi 7→ ui , i ∈ [1, n ], quotients to an
automorphism f of its abelianized group F /[F, F ]which is a free abelian group of rank
n . The map f can thus be seen as an automorphism of Z-module whose matrix (ci j )
with respect to the basis formed by the cosets of the xi – so that ci j is the cumulative
exponents of xi in u j – has a non-zero determinant. It follows that at least one term
∏

i∈[1,n ] ciσ(i ) of the usual Leibnitz expansion of the determinant must be non-zero.
This implies the lemma.

Proposition 3.3. The basis of π1(G , v ) associated to a breadth-first-search tree from v
is a shortest basis.

PROOF. Let T be a breadth-first-search tree from v . In particular, for any arc a ,
T [v, a ] is a shortest loop with base v through a in G . We denote by c1, c2, . . . , cr the
chords of T in G . Let B be another basis. According to the previous lemma, the
elements of B can be ordered in a such a way that its i th element bi contains T [v, ci ]
in its reduced expression in terms of the T [v, c j ]. It follows that bi goes through ci ,
hence is longer than T [v, ci ].
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Remark 3.4. If the edges of G are positively weighted, a shortest basis is a basis whose
total weight is minimal. Then, Proposition 3.3 still holds if we replace the breadth-first-
search tree by a shortest path tree with respect to the distance given by the weights.

Open question: Can we characterize which source vertices v in G lead to the short-
est of the shortest bases?

3.2 Homotopy test

Proposition 3.5. We can test whether any two loops ` and `′ are homotopic in O (|`|+|`′|)
time.

PROOF. Let λ and λ′ be obtained respectively from ` and `′ by maximally removing
spurs in them. By Lemma 2.3, `∼ `′ if and only if λ and λ′ are equal. Note that those
reduced forms can be obtained in linear time using a stack to remove spurs in a single
scan of ` and `′.

We have a similar result for free homotopy.

Proposition 3.6. We can test whether any two circuit c and c ′ are freely homotopic in
O (|c |+ |c ′|) time.

PROOF. Let κ and κ′ be obtained respectively from c and c ′ by maximally and

cyclically removing spurs in them. By Lemma 2.3, c
free∼ c ′ if and only if κ and κ′ are

equal up to a cyclic permutation. Those reduced forms can be obtained in linear
time from (representatives of) c and c ′ using for each of them a doubly linked list
and scanning in both directions to remove spurs from both ends of the list. Remark
that κ is a cyclic permutation of κ′ if and only if they have the same length and κ is a
substring of the square κ′ ·κ′. This last test can be performed in linear time using the
Knuth-Morris-Pratt algorithm (see previous lecture).

One may slightly optimize this last step by further reducing the size of κ and κ′.
Indeed, as explained in Remark 2.10, we can express them in the basis associated to
the chords of a spanning tree of G by simply discarding the tree edges in κ and κ′. We
can then identify the chords with a basis of π1(G , v ) and apply KMP to the reduced
expressions of κ and κ′ in this basis. This however assumes a precomputation of a
spanning tree for G .

4 Homology

We now define the cycle group of a graph G = (V , A, o , ι) with A = A+ ∪ ι(A+). The
homology of graphs appears in a 1847 paper by Kirchhoff [BLW98, p. 133] concerning
electrical networks. Those are modeled as graphs whose edges represent electrical
connections each having a resistance r j and a voltage source E j . Kirchhoff’s voltage
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law states that the directed sum of the electrical potential differences around a cycle
must be zero. Applied to a cycle of a graph, this leads to equations of the form

∑

j

r j I j =
∑

j

E j

where j runs through the arcs of the cycle, the arc j being traversed by the current I j .
If the resistances and sources are known, Kirchhoff explains how to find the minimum
number of equations as above, hence the minimum number of cycles, necessary to
determine the currents (assuming the Kirchhoff’s current law). This minimum is given
by the cyclomatic number of the graph, which is also the rank of its cycle space.

Let C0(G ) and C1(G ) be the free abelian groups with basis V and A+ respectively.
The elements of Ci (G ), i = 0, 1 are called i -chains. The support of a chain is the set of
vertices or arcs with nonzero coefficients; its elements are contained in the chain. We
also consider the boundary operator ∂ : C1(G )→C0(G ) defined by ∂ a = o (a−1)−o (a ).
The homology group of dimension zero is the quotient

H0(G ) =C0(G )/Im∂

We simply write Ci for Ci (G )when there is no ambiguity on the graph G .

Proposition 4.1. H0(G ) is isomorphic to the free abelian group over the set of connected
components of G .

PROOF. Let K be the set of connected components of G . Consider the augmenta-
tion map ε : C0→⊕KZ, c 7→

∑

κ∈K ακκwhereακ is the sum of the coefficients in c of the
vertices belonging to κ. We claim that kerε = Im∂ . Indeed, for any arc a we obviously
have ε(∂ a ) = 0, whence Im∂ ⊆ kerε. On the other hand, if c =

∑

i αi vi ∈ kerε has all its
vertices vi in a single component, we can join some fixed vertex in this component to
each vi with a path γi and we easily check that c = ∂ (

∑

i αiγi ). It follows that c ∈ Im∂
thus proving the claim. We conclude thanks to the surjectivity of the augmentation
map that

⊕KZ'C0/kerε =C0/Im∂

We put Z1 := ker∂ and call its elements cycles. Z1 is the cycle group of G . This
group is also called the first homology group and denoted by H1(G ).

Every loop or circuit (a1, a2, . . . , ak ) in G gives rise to the chain
∑k

i=1 εi a εi
i , where

εi = 1 if ai ∈ A+ and εi =−1 if ai ∈ ι(A+). To simplify notations, we use the convention
that a =−a−1 whenever a ∈ ι(A+). Equivalently, we could define the group of 1-chains
as the free group over A quotiented by the subgroup generated by the “relations” a+a−1.
In both cases, the sum

∑k
i=1 εi a εi

i can be written more simply as
∑k

i=1 ai . A cycle is said
simple if it is the sum of the arcs of a simple circuit in G .

Lemma 4.2. Every cycle is a combination of simple cycles.
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PROOF. Let c =
∑

a∈A+
αa a be a cycle of G . The proof is by induction on the size of

the support of c . Let H be the subgraph induced by the support edges of c . A vertex
of H cannot have degree one. For otherwise, such a vertex would be contained in the
support of ∂ c , contradicting ∂ c = 0. Now, H being a finite graph, it must contain a
simple circuit γ. Let α be the coefficient in c of some chosen arc in γ. We conclude by
applying the induction hypothesis to the cycle c −αγ.

Corollary 4.3. A tree is acyclic, i.e., its cycle space is trivial.

PROOF. From the previous lemma, since a tree has no simple circuit.

Proposition 4.4. Suppose G connected and let T be a spanning tree of G . Then, H1(G )
is isomorphic to the free abelian group generated by the chords of T in G .

PROOF. Let C be the set of chords of T in G . Each arc a determines a simple cycle
T [a ] corresponding to the circuit formed by a and the unique path in T from the tail
of a to its origin. Let B = {T [a ]}a∈C be the set of simple cycles associated to the chords.
The cycles in B are independent as each chord appears in the support of exactly one
of them. It remains to prove that B is generating. Let c =

∑

a∈T αa a +
∑

e∈C βe e be a
cycle in G . Then, c −

∑

e∈C βe T [e ] is a cycle whose support lies in T . It must be null
by the above corollary, i.e., c =

∑

e∈C βe T [e ].

The rank of H1(G ) is called the cyclomatic number or first Betti number and denoted
by β1(G ). When G is connected, remark from Theorem 2.9 β1(G ) is also the rank of
the fundamental group of G . In fact

Theorem 4.5 (Hurewicz). H1(G ) is isomorphic to the abelianization of the fundamental
group of G .

PROOF. Denote byL (G , v ) the set of loops of G with basepoint v . The mapL (G , v )→
H1(G ) defined by (a1, a2, . . . , ak ) 7→

∑k
i=1 ai is invariant under elementary homotopies

and “commutes” with concatenation. It thus defines a morphismϕ :π1(G , v )→H1(G ).
We just saw that any cycle can be written as a combination of cycles of the form T [a ],
for T a spanning tree of G . Noting that ϕ(T [v, a ]) = T [a ] in H1(G ), it follows that ϕ is
onto. Let γ= T [v, a1] ·T [v, a2] · · ·T [v, ak ] be any element of π1(G , v )written over the
basis {T [v, a ]}a∈C . Then ϕ(γ) =

∑

a∈C na T [a ]where na is the cumulative exponent of
T [v, a ] in γ. Hence, γ ∈ kerϕ if and only if all the na cancels. This is exactly saying that
γ belongs to the derived subgroup [π1(G , v ),π1(G , v )] of π1(G , v ). We thus have

H1(G )'π1(G , v )/kerϕ =π1(G , v )/[π1(G , v ),π1(G , v )]

Exercise 4.6. Show that the one dimensional homology of G is the direct sum of the
one dimensional homology of its 2-connected components (the blocks of G ). (Hint:
consider the map sending a cycle to its traces over the 2-connected components of
the graph.)
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The homology functor Let f : G → G ′ be a graph morphism. f induces a chain
morphism f# : Ci (G )→Ci (G ′) by setting for v ∈V (G ) and a ∈ A(G ):

f#(v ) = f (v ) and f#(a ) =

�

0 if f (a ) ∈V (G ′)
f (a ) otherwise

and by linear extension to chains.

Proposition 4.7. The chain morphism commutes with the boundary operator, i.e.,

f# ◦ ∂ = ∂ ′ ◦ f#

(We use a prime to denote the boundary operator for G ′.) Hence, f induces a morphism
between homology groups f∗ : Hi (G )→Hi (G ′), i = 0, 1.

PROOF. The commutativity of f# with the boundary operator is a direct conse-
quence of the commutativity of morphisms with the origin map. It follows that
f# sends the kernel and image of ∂ into the kernel and image of ∂ ′, respectively.
Hence, f# descends to a quotient f∗ : C0/Im∂ →C ′0/Im∂ ′ that restricts to a morphism
f∗ : ker∂ → ker∂ ′.

It is easily checked that the composition of two graph morphisms f ◦g satisfies ( f ◦g )∗ =
f∗ ◦g∗ and that the identity of a graph induces the identity of its homology group. In
other words the association of graphs and morphisms to the corresponding homology
groups and group morphisms is a functor.

Homology with other coefficients We can define homology relatively to any abelian
coefficient group Γ . To this end, we define a chain of vertices or arcs as a formal
combination with coefficients in Γ . The set of chains is equipped with a group structure
induced by the law of Γ . Alternately, these chain groups could be defined by tensoring
C0 and C1 with Γ . The boundary operator and the homology groups are then defined
as for integer coefficients taking into account the new definition of chain groups. The
homology with integer coefficients is the most general in the sense that it determines
homology over any other group. This is the content of the universal coefficient theorem
for homology [Hat02, Sec. 3.A]. However, it is often convenient to restrict to other
coefficients for computational reasons or to concentrate on specific properties of
homology. Common choices for the coefficients include the field of rationalsQ and
the finite cyclic groupsZ/pZ. A specific case occurs for Γ =Z/2Z= {0̄, 1̄}. A chain with
Z/2Z coefficients can be interpreted as a subset of vertices or edges and the sum of
two chains becomes their symmetric difference. A cycle is just a subgraph of G , each
vertex of which has even degree. Such subgraphs are sometimes called Eulerian1, or
even subgraphs.

1The terminology can be confusing as it is also used to mean a connected Eulerian subgraph
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5 Cohomology

Cohomology is defined dually to homology. We again consider a graph G and its
chain groups C0(G ) and C1(G ). The cochain groups are the dual groups C 0(G ) =
hom(C0(G ),Z) and C 1(G ) = hom(C1(G ),Z) of linear maps C0(G )→ Z and C1(G )→ Z,
respectively. We simply write C i for C i (G )when there is no ambiguity on the underly-
ing graph G . Viewing the vertices and arcs as elementary chains, we have that V (G )
and A+ constitute bases of C0 and C1, respectively. It follows that the elements of the
cochain groups C 0 and C 1 can be specified by the values they take on the correspond-
ing bases. The elements of C 1 are also called cocycles2. The dual of the boundary
operator is the coboundary operator δ : C 0→C 1, f 7→ f ◦ ∂ . The coboundary group
is the group Imδ. Its elements are called coboundaries. The cohomology groups of
G are

H 0(G ) = kerδ and H 1(G ) =C 1/Imδ

When G is not connected the cohomology groups are (direct) products of the coho-
mology groups of each component. This follows from the fact that the cochain groups
are products of the cochain groups of the components of G and that the coboundary
operator is a product of componentwise coboundaries. We can thus restrict ourselves
to connected graphs.

Lemma 5.1. If G is connected H 0(G ) is infinite cyclic (isomorphic to Z).

PROOF. An element f of kerδ is such that f (∂ a ) = 0 for any arc a , i.e. f (o (a−1)) =
f (o (a )). By connectivity of G it follows that f takes the same value for all the vertices.
The kernel of δ is thus the set of multiples of the constant map sending each vertex to
one.

Lemma 5.2. The first cohomology group of a tree is trivial.

PROOF. Let v be a vertex of a tree T . We consider the map

σT : C 1(T )→C 0(T ), f 7→σT ( f ) : w ∈V (T ) 7→
∑

a∈T [v,w ]

f (a )

We easily check that for any f ∈C 1(T )we haveδσT ( f ) = f . It follows that Imδ=C 1(T ),
i.e., H 1(T ) is trivial.

Proposition 5.3. Let T be spanning tree of a connected graph G . Then H 1(G ) is iso-
morphic to the product of copies of Z, with one copy per chord of T in G .

PROOF. Let C be the set of chords of T in G . We view elements ofΠCZ as functions
C →Z. We consider the group morphism π :ΠCZ→C 1(G )/Imδ that maps a function
φ : C →Z to the class of the cocycle π(φ) : C1(G )→Z defined for all a ∈ A+ by:

π(φ)(a ) =

�

φ(a ) if a ∈C
0 if a ∈ T .

2For higher dimensional complexes, the cocycle group is the kernel of the coboundary operator
C 1→C 2.
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For g ∈ C 1(G ), we apply the morphism σT of Lemma 5.2 to its restriction g |T on T
and viewσT (g |T ) as a cochain in C 0(G ) since V (T ) =V (G ). Note from Lemma 5.2 that
σT (g |T ) = g |T , so that g −δσT (g |T ) cancels over T . This last cocycle restricts in turn
to a functionφ : C →Z such that π(φ) is the cohomology class of g −δσT (g |T ), hence
of g . This shows that π is onto. On the other hand, π(φ) ∈ Imδ implies π(φ) =δ f for
some f ∈C 0(G ). Because T is connected andπ(φ) cancels over T , the cochain f must
be constant on the vertices of T . Because T is spanning, δ f is also null on C , whence
φ = 0. It follows that π is injective, hence an isomorphism.

6 Some Elementary Algorithms Related to Homology

As for the fundamental group, we examine how to compute a basis of the first homology
group of a finite connected graph G . Following the proof of Proposition 4.4, or by
applying Theorem 4.5, the cycles T [a ] when a runs over the chords of a spanning
tree T of G constitute a basis of H1(G ). Such a basis is called a fundamental cycle
basis or a Kirchhoff basis. When G is not connected, we can work independently on
each connected component of G since homology is the direct sum of the component
homologies. We can even refine this decomposition into 2-connected components
(cf. Exercise 4.6).

We will thus assume that G is connected. When the edges of G are positively
weighted, we can search for a basis that minimizes the sum of the length of its cycles.
Such a basis is called a minimum weight (cycle) basis. Here, the length of a cycle c =
∑

a na a is |c |w :=
∑

a |na |w (a )where w : C →Q∗+ is the weight function. Corollary 6.3
below shows that a minimum cycle bases is made of simple cycles. However, as
opposed to Proposition 3.3, a minimum weight basis is not always a fundamental
cycle basis. The counterexample in Figure 1 is from Hartvigsen and Mardon [HM93]. In

1

1

1

1

1

1

Figure 1: Each spanning tree in this graph is a path of length 2. The corresponding
fundamental basis is composed of two cycles of length 2 and two cycles of length 3
leading to a fundamental cycle basis of total weight 10. However a minimum weight
basis of total weight 9 is given by the three outer cycles of length 2 and the central
triangle.

fact, it seems that little is known concerning the minimum weight bases of the integer
homology of a graph. Most of the literature on the subject has been concentrated
on homology with Z/2Z coefficients. Even in this case, the same counterexample as
above shows that a minimum weight basis is not always a fundamental cycle basis.
Hartvigsen and Mardon [HM93] characterize the graphs possessing a minimum weight
basis that is also a fundamental cycle basis, independently of the weight function.
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In general, looking for the minimum weight fundamental basis is NP-hard [DPeK82].
However, Horton [Hor87] proved that computing a minimum weight basis with Z/2Z
coefficients can be done in polynomial time. We now present his algorithm.

If B is a family of cycles of G , we denote by `(B ) the list of lengths of the cycle of B
in increasing order. We first observe that

Lemma 6.1. A basis B of H1(G ,Z/2Z) has minimum weight if and only if `(B ) is min-
imal for the lexicographic order. The following algorithm thus returns a minimum
weight basis.

1. Initialize B to the empty set.

2. Scan the cycles in H1(G ,Z/2Z) in increasing order of their length. At each step,
add the scanned cycle c to B if B ∪{c } is an independent family.

3. return B .

PROOF. Remark that using the coefficient field Z/2Z provides the homology group
H1(G ,Z/2Z)with a vector space structure. (It is thus a matroid to which we can apply
the classical greedy algorithm.) It is then a simple exercise to show that minimum
weight bases are indeed characterized by the minimality of their length list for the
lexicographic order.

Since H1(G ,Z/2Z) contains 2β1(G ) cycles, this algorithm is not very efficient. In order
to restrict the search, Horton characterizes the cycles that may belong to a minimum
weight basis.

Lemma 6.2. Suppose b = c + d is a cycle of a basis B of H1(G ,Z/2Z). Then either
B \ {b }∪ {c } or B \ {b }∪ {d } is a basis.

PROOF. If c and d were both in the linear span of B \ {b }, then so would b .

Corollary 6.3. The cycles of a minimum weight basis are simple.

PROOF. Suppose that b is a non-simple cycle of a minimum weight basis B . Then
b can be written as the sum b = c +d of two edge disjoint cycles. In particular, b is
longer than c or d . By the preceding lemma, we can replace b by c or d in B to get a
shorter basis, contradicting the minimality of B .

Lemma 6.4. Let b = p ·q−1 be a cycle of a minimum weight basis, where p and q are
two edge disjoint paths. Then, either p or q is a shortest path for | · |w .

PROOF. Let r be a shortest path from the common initial vertex of p and q to their
common last vertex. With a little abuse of notation, we can write b = p · r −1+ r ·q−1.
By Lemma 6.2, b must be no longer than p · r −1 or r ·q−1, implying that either q or p
is a shortest path.
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Corollary 6.5. Let v be a vertex of a cycle b of a minimum weight basis. Then b =
p ·a ·q−1, where a is an arc and p , q are two shortest paths with v as initial vertex.

PROOF. We write b = (a1, a2, . . . , ak ) with v = o (a1) = o (a−1
k ). Let i be the maximal

index such that (a1, a2, . . . , ai ) is a (simple) shortest path. Then b = (a1, a2, . . . , ai ) ·ai+1 ·
(ai+2, . . . , ak ) and the previous lemma implies that (ai+2, . . . , ak ) is a (possibly empty)
shortest path

When there is a unique shortest path between every pair of vertices, this corollary
allows us to reduce the scan of step (2) in Lemma 6.1 to |V ||A+| cycles, one for each
(vertex,edge) pair. In general this cannot be assumed3 and there still might be too
many cycles to test. Suppose that for every vertex v we choose a shortest path tree
Tv with root v . For every pair (v, a ) ∈ V × A+, let c (v, a ) = Tv [v, a ] be the loop with
basepoint v through a relatively to Tv .

Lemma 6.6. The scan of step (2) in the greedy algorithm of Lemma 6.1 can be restricted
to the loops c (v, a ) for (v, a ) ∈V ×A+.

PROOF. It is enough to prove (cf. Exercise 6.7 below) that there exists a minimum
weight basis composed of cycles of the form c (v, a ) only. Let b be a cycle of some
minimum weight basis. For every vertex v of b , Corollary 6.5 gives a decomposition
b = p ·a ·q−1, where p and q are shortest paths with origin v and a is an arc. Let dv

be the number of arcs in b that are not in c (v, a ). We define the default value d (b ) as
the minimum of dv taken over all the vertices of b .

We now consider a minimum weight basis B minimizing the sum
∑

b∈B d (b ) of
the default values of its cycles. If this sum is zero, then all the cycles have the form
c (v, a ) and we are done. Otherwise, consider a cycle b ∈ B that is not equal to any
c (v, a ). Let b = p · a · q−1 be a decomposition for which the minimum d (b ) occurs.
Denote by x and y the endpoints of a and by v the starting vertex of p , so that
c (v, a ) = Tv [v, x ] ·a ·Tv [y , v ]. We can write

b = p ·Tv [x , v ] + c (v, a ) +Tv [v, y ] ·q−1

Applying Lemma 6.2 twice we see that b can be replaced in B by at least one of the three
cycles in the above sum, to produce another cycle basis. If p ·Tv [x , v ] is shorter than
b or is non-simple, then it cannot replace b by (weight) minimality of B . Otherwise,
by writing the cycle p ·Tv [x , v ] as p ′ · e ·Tv [x , v ]with p = p ′ · e , it is easily seen that the
default value of this cycle is strictly less than d (b ). The same is true for Tv [v, y ] ·q−1.
In any case, b can be replaced by a cycle whose default value is strictly less than d (b ).
This is in contradiction with our choice of B .

Exercise 6.7. Suppose that the cycles of B all belong to a subset C ⊂H1(G ). Check that
the scan of step (2) in the greedy algorithm of Lemma 6.1 can be restricted to C .

3 A probabilistic perturbation [CCE13] technique allows to enforce this assumption, at the price of
loosing determinism.
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Proposition 6.8. A minimum weight basis of G can be computed in
O (|V |2 log |V |+β 2

1 (G )|V ||A|) =O (|V ||A|3) time.

PROOF. By Lemma 6.6, we restrict the scan step of the greedy algorithm to the
cycles c (v, a ) with (v, a ) ∈ V × A+. For each vertex v , we compute a shortest path
tree Tv in O (|V | log |V |+ |A|) time using Dijkstra’s algorithm. There are β1(G ) cycles
of the form c (v, a ), each of size O (|V |). Their computation and storage for all the
vertices v thus requires O

�

|V |(|V | log |V |+ |A|+β1(G )|V |)
�

time. They can be sorted
according to their length in O (β1(G )|V |2 log(β1(G )|V |2)) time. In order to check if a
cycle is independent of the current family of basis elements, we view a cycle as a vector
in (Z/2Z)A+ . We use Gauss elimination to maintain the current family in row echelon
form. This family has at most β1(G ) vectors and testing a new vector against this
family by Gauss elimination needs O (β1(G )|A|) time. The cumulative time for testing
independence is thus O (β 2

1 (G )|A||V |). The whole greedy algorithm finally takes

O
�

|V |(|V | log |V |+ |A|+β1(G )|V |) +β1(G )|V | log(β1(G )|V |) +β 2
1 (G )|A||V |

�

time which reduces to O (|V |2 log |V |+β 2
1 (G )|V ||A|) after simplification.

Note that the above scan can be further reduced by discarding the loops c (v, a ) that are
not simple. We can also decompose a cycle into a combination of a fixed fundamental
basis associated to a tree. The decomposition of a cycle is just given by its trace over
the chords of that tree. This allows to represent the current family of basis elements
by a matrix of size β1(G )×β1(G ) instead of β1(G )×A+.

The computation of a minimal weight basis is often designated by the acronym
MCB (Minimum Cycle Basis problem). Many properties of minimum weight bases
and other short cycles are discussed in Gleiss’s thesis [Gle01]. This minimal weight
basis problem can be recast in the more formal language of matroids, see Golinski
and Horton [GH02]. The greedy algorithm as analysed in Proposition 6.8 is not opti-
mal. Further improvements were proposed [KMMP04, KMMP08, MM09]. For integer
coefficients the set of Z-homology classes do not form a matroid in general. The
greedy algorithm cannot be applied anymore. In fact, Kavitha et al. [KLM+09] provide
an example of a weighted graph whose minimal weight bases for Z/2Z and integer
coefficients differ. The status of the computation of a minimal weight Z-homology
basis is still unknown.

Open problem: What is the complexity of the computation of a minimal weight
basis for Z-homology?

7 Coverings, Actions and Voltages

Covering projections are among the most fruitful morphisms when associated to ho-
motopy. They allow to translate topological properties into group properties, leading
to surprisingly simple proofs in one of the two fields. Intuitively, a covering of a graph
G is a morphism H → G that is locally an isomorphism. The graphs G and H are
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respectively called the base and the total space of the covering. Looking from the base
or from the total space provides different ways of describing coverings. This section
details those point of views, leading to a classification of coverings. All the material
covered here is classical and can be found in textbooks on algebraic topology such
as [Mas77]. It was later recast in the realm of graph theory [GT87, BW09].

7.1 Coverings

Definition 7.1. The star of a vertex v in a graph G is the set of arcs with origin v . It is
denoted Star(v ) = {a ∈ A(G ) | o (a ) = v }.

Definition 7.2. A graph covering is a graph epimorphism p : H � G such that the
restriction p : Star(w )→ Star(p (w )) is bijective for all vertex w of H . For x a vertex or
arc of the base graph G , the set p−1(x ) is called the fiber above x .

Figure 2 depicts a graph covering. If p : H →G is a covering and γ is a path in G ,

Figure 2: Each vertex of the left graph is sent to the vertex of the same color in the right
graph. Arcs are mapped accordingly.

then a path δ in H that projects to γ, i.e., such that p (δ) = γ, is called a lift of γ.

Lemma 7.3 (Unique lift property). Let w ∈ V (H ) with p (w ) = o (γ). There exists a
unique lift of γwith origin w .

Figure 3 illustrates the property.

PROOF. Since Star(w ) is sent bijectively to Star(o (γ)) by p , there exists a unique arc
in Star(w ) sent to the first arc of γ. We can continue inductively this way, lifting the
arcs of γ one after the other, showing existence and uniqueness of the lift of γ starting
from w .

Lemma 7.4. Let p : H →G be a covering. Consider two homotopic paths α,β in G and
two respective lifts α̃ and β̃ with the same origin. Then α̃ and β̃ are homotopic in H .

PROOF. If α and β are related by one elementary homotopy, then so are α̃ and β̃
since a spur a ·a−1 lifts to a spur. In the general case, the lemma follows by induction
on the number of elementary homotopies relating α to β .
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pw o (γ)

pw o (γ)

Figure 3: Top, the right closed path with origin o (γ) has a unique lift starting at w .
Bottom, reverting the orientation of the path changes its lift accordingly.

In particular, the final endpoint of the lift of a path α from a given vertex w only
depends on the homotopy class [α] of α. We denote by w .[α] this final endpoint. We
trivially check that for any path β starting at the end of α:

w .[α ·β ] = (w .[α]).[β ]

Corollary 7.5. If p : H →G is a covering, then the induced morphism p∗ :π1(H , w )→
π1(G , p (w )) is one-to-one.

PROOF. Denote by [α] the homotopy class of a loop α. By definition p∗[α] = p∗[β ]
means p (α)∼ p (β ). By the preceding lemma this implies α∼β , i.e., [α] = [β ]. In other
words p∗ is one-to-one.

A direct application of this corollary to the graph coverings of Figure 4 shows that a
free group over a countable set of elements embeds as a subgroup of the free group
over two elements! Corollary 7.5 tells that the fundamental group of the total space
can be seen as a subgroup of the fundamental group of the base. The reciprocal is also
true.

Proposition 7.6. Let v be a vertex of the connected graph G . For every subgroup U <
π1(G , v ), there exists a connected covering pU : (GU , w )→ (G , v )with pU ∗π1(GU , w ) =U .

PROOF. Fix a spanning tree T of G . We write γa for the loop T [v, a ]. Define GU by

• V (GU ) =V (G )×{U g }g∈π1(G ,v ),

• A(GU ) = A(G )×{U g }g∈π1(G ,v ),

• o (a ,U g ) = (o (a ),U g ) and (a ,U g )−1 = (a−1,U g [γa ]),
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a

Figure 4: Left, an infinite graph with a countable set of generators. This graph covers
the middle graph by mapping vertices and edges according to their colors. The middle
graph covers the bouquet B2 to the right. It follows that the fundamental group of the
left graph, a free group over an infinite countable set of elements, embeds into the free
group with n > 2 elements which itself embeds into F (2).

where U g denotes the right coset representative in π1(G , v ) of g with respect to U .
Schematically, the typical edge of GU is

(o (a ),U g )•
(a ,U g ) // •(o (a−1),U g [γa ])

(a−1,U g [γa ])
oo

and let pU be the projection on the first component. Note that for a vertex x of
G , Star(x ,U g ) = Star(x )×{U g }. It follows that pU : Star(x ,U g )→ Star(x ) is a bijection
and that pU is indeed a covering.

Let λ = (a1, a2, . . . , ak ) be a path from v to a vertex x in G . Setting w = (v,U ), a
simple induction on k shows that the lift ofλ from w has destination w .[λ] = (x ,U [γa1

]·
[γa2
] · · · [γak

]). In particular, this destination is (x ,U ) when λ is contained in T (see
Figure 5, Left) and (x ,U [λ])when λ is a loop with homotopy class [λ] ∈π1(G , v ). Now,
for a vertex (x ,U [λ]) of GU , we have w .[λ ·T [v, x ]] = (x ,U [λ])) (see Figure 5, Right). It

pU

T [v, x ]
v

x

(v,U )

(x ,U )

pU

T [v, x ]
v

x

(v,U )

(x ,U [λ])

[λ]

(v,U [λ])

Figure 5: Left and right: two lifts in GU of paths in G .

ensues that GU is connected. Finally, a loop λwith basepoint v satisfies [λ] ∈ Im p∗ if
and only its lift starting from w is closed, i.e., (v,U [λ]) = (v,U ). In turns, this means
[λ] ∈U .

Example 7.7. If G is a 2-circuit and U = 2Z<Z'π1(G , v ), we obtain a covering by a
4-circuit as on Figure 6.
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(v,U )
pU

T

x

v

(x ,U )

(v,U g )

(x ,U g )
a

Figure 6: A covering of a 2-circuit. The spanning tree T is composed of a single edge.
The fundamental group π1(G , v ) is generated by g = [γa ], so that U =< g 2 >.

As an immediate application, we get

Theorem 7.8 (Nielsen-Schreier, mid 1920’s). Every subgroup of a free group is free.

PROOF. Let F (S ) be a free group over S . We realize F (S ) as the fundamental group
of the bouquet of circles with edge set S . By Proposition 7.6, every subgroup of F (S ) is
the fundamental group of a graph (covering) which we know to be free4.

Exercise 7.9. Let p : H →G be a graph covering and letα be a path from a vertex v of H
to a vertex w in the same fiber as v . Show that p∗π1(H , w ) = [p (α)]−1 ·p∗π1(H , v ) · [p (α)].
In particular, p∗π1(H , w ) and p∗π1(H , v ) are conjugate subgroups in π1(G , p (v )).

7.1.1 Covering morphisms

We now consider the set of all the coverings of a given connected graph G . They can
be considered as the objects of a category whose morphisms are defined as follows.

Definition 7.10. A morphism between coverings p : H →G and q : K →G is a graph
morphism f : H → K that sends the fibers to fibers in such a way that the diagram

H
p

  

f // K
q

~~
G

is commutative.

Since the restrictions of p and q to stars are bijective it must be the case for f . It
follows that f is a covering. Hence, a covering morphism is a covering of (the total
space of) a covering.

4Another quick proof uses the fact that a group is free if and only if it acts freely on a tree. But any
subgroup obviously acts freely on the same tree, so that it must be free [Ser77].
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Exercise 7.11. Let f be a morphism from the covering p : H → G to the covering
q : K →G . Consider a vertex v in H and a path α in G with initial vertex p (v ). Show
the identity

f (v ).α= f (v.α)

Exercise 7.12. Show that a covering morphism
(H , v )

p

$$

// (H , v )
p

zz
(G , u )

with H

connected, must be the identity.

Lemma 7.13. There is a morphism between connected coverings p : (H , v )→ (G , u ) and
q : (K , w )→ (G , u ) if and only if p∗π1(H , v ) is a subgroup of q∗π1(K , w ) in π1(G , u ).

PROOF. The condition is clearly necessary. Indeed, if f is a covering morphism as
in the lemma, then by functoriality of π1 it satisfies p∗ = q∗ ◦ f∗, implying p∗π1(H , v )<
q∗π1(K , w ). It remains to prove that the condition is sufficient. So, we suppose
p∗π1(H , v ) < q∗π1(K , w ). We shall construct a covering morphism f : H → K . Let
x be a vertex of H and let γ be a path from the basepoint v of H to x . We put

f (x ) :=w .[p (γ)] =w .p∗[γ]

If a is an arc with origin x , we set f (a ) to the unique edge with origin f (x ) that projects
to p (a ) (see Figure 7). We claim that f is a well-defined map: if λ is another path

p

u

v
w

x f (x )

q

a f (a )
H

K

G p (a )
p (x )

Figure 7: The image of x ∈ V (H ) is a vertex f (x ) ∈ V (K ) obtained by lifting in K the
projection in G of a path from v to x in H . Arcs are mapped accordingly.

from v to x then w .p∗[λ] = (w .p∗[λ.γ−1]).p∗[γ]. By assumption, p∗[λ.γ−1] ∈ q∗π1(K , w ).
This means that the lift of p∗[λ.γ−1] from w is closed, or equivalently: w .p∗[λ.γ−1] =w .
Whence w .p∗[λ] =w .p∗[γ] as claimed. The map f so defined is clearly a graph mor-
phism: it commutes with the origin and inverse operators. Finally, we have q ( f (x )) =
q (w .p∗[γ])which is the final endpoint p (x ) of the path p (γ). Moreover, q ( f (a )) = p (a )
by construction, so that p = q ◦ f as required.

Corollary 7.14. The connected coverings p : H →G and q : K →G are isomorphic if
and only if p∗π1(H , v ) and q∗π1(K , w ) are in the same conjugacy class in π1(G , u ) for
p (v ) = q (w ) = u.
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PROOF. The condition is necessary by the previous lemma. So, we suppose that
p∗π1(H , v ) = g −1 · q∗π1(K , w ) · g for some g ∈ π1(G , u ). We easily check that g −1 ·
q∗π1(K , w )·g = q∗π1(K , w .g ) (see Exercise 7.9). It follows that p∗π1(H , v ) = q∗π1(K , w .g ),
and by two applications of the previous lemma, we get covering morphisms (H , v )→
(K , w .g ) and (K , w .g )→ (H , v ). By Exercise 7.12 those morphisms are inverse isomor-
phisms.

The corollary reformulates as follows.

Theorem 7.15. The set of isomorphism classes of connected coverings of a connected
graph G corresponds to the set of conjugacy classes of subgroups of the fundamental
group of G . The preorder relation K �H given by the existence of a covering morphism
H → K corresponds to the inclusion g −1 ·π1(H , v ) · g ⊆π1(K , w ) for some g ∈π1(G , u ).

The trivial group {1} ⊂π1(G , u ) is obviously the maximal element for this preorder.
The corresponding covering is called the universal cover. Since its fundamental group
is trivial, the universal cover is a tree by Theorem 2.9. Figure 8 shows the universal
cover of the Bouquet B2.

Figure 8: The universal cover of the Z2 grid is also the universal cover of B2.

7.2 Actions and quotients

We denote by Aut(G ) the group of automorphisms of a graph G . The orbit of a vertex
or arc x of G by a subgroup Γ of automorphisms is denoted by Γ · x = {g (x ) | g ∈ Γ }.

Definition 7.16. The subgroup Γ <Aut(G ) acts without arc inversion if for any arc a
of G and any automorphism g in Γ , we have g (a ) 6= a−1. In other words a−1 6∈ Γ ·a . If Γ
acts without arc inversion, we can define the quotient graph G /Γ by

• V (G /Γ ) = {Γ · v }v∈V (G ),

• A(G /Γ ) = {Γ ·a }a∈A(G ),

• o (Γ ·a ) = Γ ·o (a ) and (Γ ·a )−1 = Γ ·a−1
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Note that Γ acting without inversions, we have (Γ ·a )−1 6= Γ ·a , i.e., the arc inversion is
fixed point free. The quotient map pΓ : G →G /Γ sending a vertex or arc to its orbit is
obviously a graph morphism.

Although the quotient map is onto, it is generally not a covering as illustrated on
Figure 9.

Figure 9: The quotient of the wheel graph with 5 spokes by the subgroup of automor-
phism generated by the rotation with angle 2π/5 about the center (blue) vertex. Note
that the quotient map is not a covering.

Definition 7.17. A group of automorphisms Γ < Aut(G ) acts freely on G if it acts
without arc inversion and each automorphism in Γ that is not the identity is fixed
vertex free (i.e., does not fix any vertex). Intuitively, this means that the corresponding
topological (PL) automorphisms (extending the vertex maps to the edges in the obvious
way) are fixed point free. Indeed, acting without inversion prevents the automorphisms
from fixing the middlepoint of edges and being fixed vertex free prevents them from
fixing the edge endpoints.

Proposition 7.18. If Γ acts without arc inversion on G , then pΓ : G →G /Γ is a covering
if and only if Γ acts freely on G .

PROOF. Since pΓ is onto, it is a covering if and only if its restriction to stars is one-to-
one. This is equivalent to say that whenever a , b are two distinct arcs with common
origin then Γ .a 6= Γ .b . To prove the proposition, we rather show the contrapositive:
there exists two distinct arcs a , b of common origin with the same orbit if and only if
there exists a vertex v fixed by some automorphism g ∈ Γ \ {I d }. Indeed, if Γ .a = Γ .b
then a = g (b ) for some g ∈ Γ \ {I d }. This implies v = g (v ) for v = o (a ). On the other
hand, if g 6= I d fixes a vertex v , we consider the set of arcs fixed by g . This set induces
a subgraph H fixed by g . Since g 6= I d we have H  G and there must be an arc a
whose origin is in H but that is not fixed by g . Then a and b = g (a ) are two distinct
arcs with common origin in the same orbit (see Figure 10).

Lemma 7.19. If Γ acts freely on G then (pΓ )∗π1(G , v )Ãπ1(G /Γ ,Γ · v ).
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a

g (a )

Γ ·a

pΓ

Figure 10: If a and g (a ) are two distinct arcs with common origin for some g ∈ Γ \{I d }
then pΓ is not a covering.

PROOF. Let pΓ (α) be a representative of an element in (pΓ )∗π1(G , v ) and let β be a
loop with basepoint Γ .v in G /Γ . We just need to show that the conjugate β ·pΓ (α) ·β−1

represents a class in (pΓ )∗π1(G , v ), or equivalently that the lift of β ·pΓ (α) ·β−1 starting
from v is a (closed) loop.

Since β is closed in G /Γ , we have pΓ (v.β ) = pΓ (v ). This means that v.β ∈ Γ .v , i.e.,
that there exists g ∈ Γ with g (v ) = v.β . Hence,

v.(β ·pΓ (α) ·β−1) = g (v ).(pΓ (α) ·β−1) = (g (v ).pΓ (α)).β
−1

On the other hand, the lift of pΓ (α) from g (v ) is g (α) (see Figure 11) and is thus closed.
It follows that (g (v ).pΓ (α)).β−1 = g (v ).β−1 = v , which was to be proved.

v Γ · v
pΓ

α pΓ (α)

ββ̃

g (α)

g (v )

Figure 11: The lift of pΓ (α) from g (v ) is g (α).

Definition 7.20. If p : H →G is a graph covering, we denote by Aut(p ) the group of
automorphisms of p . This is the subgroup of Aut(H ) composed of the automorphisms

f of H preserving the fibers of p , i.e., such that the diagram
H

p

  

f // H
p

~~
G

com-

mutes. Automorphisms in Aut(p ) shuffle the vertices in each fiber and are sometimes
called deck transformations by analogy with the shuffling of a deck of playing cards.

Lemma 7.21. If H is connected, Aut(p ) acts freely on H .

PROOF. Let f ∈ Aut(p ). Since p ( f (a )) = p (a ) for all arcs a , we cannot have f (a ) =
a−1. For the arc p (a )would be equal to its inverse p (a )−1, a contradiction. It follows
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that Aut(p ) acts without arc inversion. On the other hand, suppose that f fixes some
vertex v . Consider any other vertex w of H and a path α from v to w . We compute

f (w ) = f (v ).[p ( f (α))] = v.[p (α)] =w

So that f fixes all the vertices. Moreover, the restriction of p to stars being bijective, the
commutation equation p ( f (a )) = p (a ) together with o ( f (a )) = o (a ) implies f (a ) = a .
Consequently, f must be the identity morphism and the action of Aut(p ) is fixed vertex
free.

In conjunction with Proposition 7.18, Lemma 7.21 implies that the quotient projec-
tion H →H /Aut(p ) is a covering. It is natural to ask whether this covering is isomorphic
to p . In particular, when p arises as a quotient, we have

Lemma 7.22. If Γ < Aut(G ) acts freely on a connected graph G , then Aut(pΓ ) = Γ .

PROOF. By definition, Γ ⊆Aut(pΓ ) and Γ acts transitively on the fibers of pΓ . It is thus
enough to prove Aut(pΓ )⊆ Γ . Let f ∈Aut(pΓ ). Fix a vertex v in H . Then, f (v ) being in
the fiber of v , the transitive action of Γ implies the existence of g ∈ Γ with g (v ) = f (v ).
Now, f ◦ g −1 is an automorphism of Aut(pΓ ) fixing v . It must be the identity by the
previous lemma, whence f = g ∈ Γ .

Lemma 7.23. Let p : (H , v )→ (G , u ) be a connected covering and let w ∈ V (H ) be in
the same fiber as v . Then p∗π1(H , w ) = p∗π1(H , v ) if and only if there exists f ∈ Aut(p )
such that f (v ) =w .

PROOF. For the reverse implication, note that f∗ being an isomorphism, we have
f∗π1(H , v ) =π1(H , w ). Using that p ◦ f = p , we deduce p∗π1(H , v ) = p∗ ◦ f∗π1(H , v ) =
p∗π1(H , w ) as desired. For the direct implication, we shall construct f as in the lemma.
For a vertex x of H and a path α from v to x , we set

f (x ) =w .[p (α)]

See Figure 12. f is well-defined. Indeed, if β is another path from v to x then β ·α−1

p

vw

xf (x )

af (a )

u

G
H

Figure 12: To define f (x ), we “translate” to w the origin of a path from v to x .

is a loop with basepoint v . We have [p (β ·α−1)] ∈ p∗π1(H , v ) = p∗π1(H , w ). It follows
that the lift of p (β ·α−1) from w is closed. We can thus write

w .[p (β )] =w .[p (β ·α−1)][p (α)] =w .[p (α)]

We can easily extend f to arcs in order to define a p -automorphism. The details are
left to the reader.
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Corollary 7.24. If p : (H , v )→ (G , u ) is a connected covering with p∗π1(H , v )Ãπ1(G , u )
then Aut(p ) acts transitively on the fiber of v .

PROOF. Let w be any vertex in the fiber of v . We remark that p∗π1(H , v ) being
normal in π1(G , u ), we have p∗π1(H , w ) = p∗π1(H , v ) (see Exercise 7.9). The previous
lemma allows to conclude.

Exercise 7.25. With the assumptions of the lemma show that Aut(p ) acts transitively
on any fiber, not just the fiber of v .

Proposition 7.26. Let p : (H , v )→ (G , p (v )) be a connected covering and let Γ < Aut(H )
be a subgroup of automorphisms of H acting without arc inversion. Then, p and pΓ are

isomorphic, i.e., there is an isomorphism H /Γ →G making the diagram
HpΓ

��
p
��

H /Γ ' // G
commute, if and only if

1. Γ = Aut(p ), and

2. p∗π1(H , v )Ãπ1(G , p (v ))

PROOF. Condition (1) is necessary: if pΓ is a covering then Γ acts freely on H by
Lemma 7.18. Lemma 7.22 then states that Γ =Aut(pΓ ). In turn, we have Aut(pΓ ) =Aut(p )
by the commutativity of the diagram in the lemma. So that Γ = Aut(p ) as claimed.
Condition (2) is also necessary: By Lemma 7.19, we have pΓ ∗π1(H , v )Ãπ1(H /Γ , pΓ (v ))
whence p∗π1(H , v ) Ã π1(G , p (v )), again by the commutativity of the diagram in the
lemma.

It remains to prove that conditions (1) and (2) are sufficient. By Exercise 7.25,
condition (2) implies that Aut(p ) acts transitively on each fiber of p : H →G . It then
follows from condition (1) that H /Γ =H /Aut(p )'G .

Definition 7.27. A covering as in the proposition, i.e., such that the fundamental group
of the total space is normal in the fundamental group of the base, is called normal or
regular or Galois.

In any case, p being normal or not, we can fully describe Aut(p ) in terms of
p∗π1(H , v ).

Proposition 7.28. Let p : H →G be a covering with H connected and let v be a vertex
of H . Then

Aut(p )'N
�

p∗π1(H , v )
�

/p∗π1(H , v ),

where N
�

p∗π1(H , v )
�

is the normalizer of p∗π1(H , v ), i.e., the largest subgroup of
π1(G , p (v )) containing p∗π1(H , v ) as a normal subgroup. In particular, if p is a normal
covering then Aut(p )'π1(G , p (v ))/p∗π1(H , v ).
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PROOF. Let λ ∈ N
�

p∗π1(H , v )
�

. We have from Exercise 7.9 that p∗π1(H , v.λ) =
λ−1 ·p∗π1(H , v ) ·λ = p∗π1(H , v ). It follows from Lemma 7.23 that there exists an au-
tomorphism fλ ∈Aut(p ) such that fλ(v ) = v.λ. By Lemma 7.21 this automorphism is
unique and we have a well-defined map ϕ : N

�

p∗π1(H , v )
�

→Aut(p ),λ 7→ fλ.
We next compute fα·β (v ) = v.(α·β ) = (v.α).β = fα(v ).β . On the other hand, fα(v ).β =

fα(v.β ) = fα ◦ fβ (v ) (see Exercise 7.11). It follows that ϕ(α ·β ) = ϕ(α) ◦ϕ(β ) showing
that ϕ is a group morphism.

We next claim that ϕ is onto. Indeed, let f ∈ Aut(p ), and let γ be a path from v
to f (v ) in H . From Exercise 7.9, we have p∗π1(H , f (v )) = λ−1 · p∗π1(H , v ) ·λ, where
λ = [p (γ)]. On the other hand p∗π1(H , f (v )) = p∗π1(H , v ) by Lemma 7.23. It follows
that λ ∈N

�

p∗π1(H , v )
�

. Moreover, f =ϕ(λ) by the preceding paragraph.
We finally note that

kerϕ = {α ∈N
�

p∗π1(H , v )
�

| v.α= v }= p∗π1(H , v )

We conclude as desired that Aut(p ) is isomorphic to the quotient N
�

p∗π1(H , v )
�

/p∗π1(H , v ).

7.2.1 The monodromy group

Let p : (H , v )→ (G , u )be a covering with H connected. We denote bySu the symmetric
group on the fiber Fu = p−1(u ). The map w 7→ w .α, with w ∈ Fu and α ∈ π1(G , u ),
defines a right action of π1(G , u ) on Fu , called the modromy action. Its image in
Su is the monodromy group of p . Since H is connected, the monodromy action is
transitive: For every w ∈Fu we have w = v.p (γ), where γ is any path from v to w . The
stabilizer of v for this action is the subgroup of loops α ∈π1(G , u ) such that v.α= v .
This is precisely the characterization of elements in p∗π1(H , v ).

Lemma 7.29. If p : (H , v )→ (G , u ) is a covering with H connected, then the restriction
f 7→ f Fu

defines a monomorphism Aut(p ) ,→Su .

PROOF. Since a p -automorphism permutes the elements of Fu , the lemma is a
simple consequence of Lemma 7.21.

7.3 Voltage Graphs

Voltage graphs provide a concise way to encode a graph covering by labelling the arcs
of the base graph. They were introduced by Gross and Tucker (see [BW09, Ch. 1] for
references).

Definition 7.30. A voltage on a graph G with values in a group Γ is a map κ : A(G )→ Γ
that commutes with the relevant inverse operations:

∀a ∈ A(G ), κ(a−1) = κ(a )−1

When Γ acts on the right on a set F , the voltage κ induces a covering pκ : Gκ→G where
Gκ is the graph defined by
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• V (Gκ) =V (G )× F ,

• A(Gκ) = A(G )× F ,

• o (a , s ) := (o (a ), s ) and (a , s )−1 := (a−1, s .κ(a )) for all (a , s ) ∈ A(G )× F ,

and pκ is the projection on the first component, (x , s ) 7→ x . Schematically, the typical
edge of Gκ is

(o (a ), s )•
(a ,s ) // •(o (a−1), s .κ(a ))

(a−1,s .κ(a ))
oo

It is a simple matter of definition to check that pκ is indeed a covering.

Exercise 7.31. Give a necessary and sufficient condition on κ and Γ for Gκ to be con-
nected.

In fact, every covering arises this way.

Lemma 7.32. Every covering p : H →G is isomorphic to a covering induced by some
voltage on G .

PROOF. We set Γ = π1(G , u ) for some fixed vertex u of G and consider the mon-
odromy action of Γ on the fiber F = p−1(u ), letting w .λ be the final vertex of the
lift of λ ∈ Γ starting from w ∈ F . We next define κ(a ) as the homotopy class of the
loop T [u , a ], for T a chosen spanning tree of G . We thus have an induced covering
pκ : Gκ→G . We shall prove that there exists an isomorphism ϕ : Gκ→H making the
following diagram commutative:

Gκ
ϕ //

pκ $$

H
pzz

G
To this end, for any two vertices x , y of G we introduce a map f y

x : p−1(x )→ p−1(y )
between their fibers:

p−1(x )
f

y
x−→ p−1(y )

w 7→ w .[T [x , y ]]

Note that f y
x and f x

y are inverse to each other. We next define ϕ : Gκ→H by

�

∀(x , w ) ∈V (G )× F :ϕ(x , w ) = f x
u (w )

∀(a , w ) ∈ A(G )× F :ϕ(a , w ) is the unique arc with origin f o (e )
u (w ) above a

andψ : H →Gκ by

�

∀v ∈V (H ) :ψ(v ) = (p (v ), f u
p (v )(v ))

∀e ∈ E (H ) :ψ(e ) = (p (e ), f u
p (o (e ))(o (e )))

It is an easy exercise to check that ϕ andψ are inverse morphisms making the above
diagram commute.
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Fix a vertex u in G . A voltage κ : A(G )→ Γ extends to the loops with basepoint u by
defining

κ(a1, a2, . . . , ak ) = κ(a1)κ(a2) · · ·κ(ak )

An elementary homotopy on the loop (a1, a2, . . . , ak ) leaves this value unchanged, so
that κ induces a group morphism κ̄ :π1(G , u )→ Γ .

Proposition 7.33. A covering p : H → G is normal if and only if it is induced by a
voltage κ on G with values in a group Γ acting on itself by right translations. Here, it is
assumed that the induced morphism κ̄ :π1(G , u )→ Γ is onto for some fixed vertex u of
G . Otherwise we can still replace Γ by the range of κ̄.

Note that requiring Γ to act on itself is equivalent to require that Γ acts freely and
transitively.

PROOF. We first assume that we are given a voltage as in the proposition. Consider-
ing the basepoint (u , 1Γ ) in Gκ we easily check that

(u , 1Γ ).λ= (u , κ̄(λ)) (1)

It follows that pκ∗π1(Gκ, (u ,1Γ )) = ker κ̄ (the set of homotopy classes with closed lift).
It ensues that pκ∗π1(Gκ, (u , 1Γ )) is normal in π1(G , u ), i.e., that pκ is a normal covering.
Remark that κ̄ being surjective implies with (1) that Gκ is connected.

We now assume given a normal covering p : (H , v )→ (G , u ). Let T be a spanning
tree of G . For every arc a of G , lemmas 7.21 and 7.23 imply the existence of a unique
automorphism fa ∈ Aut(p ) with fa (v ) = v.[T [u , a ]]. We put Γ = Aut(p ) and κ(a ) = fa

and let Γ acts on itself on the right. It remains to check that p and pκ are isomorphic
coverings. We define ϕ : Gκ→H by

ϕ(x , f ) = f (v.[T [u , x ]])

and by extending ϕ to arcs in the unique way to make it a covering morphism. We
also defineψ : H →Gκ by

ψ(y ) = (p (y ), f y
v.[T [u ,p (y )]])

extending it to arcs. We trivially check that ϕ andψ are inverse morphisms.

We end this section on graph coverings with a graphics representing the different
types of quotients and coverings.
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