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A fundamental problem when dealing with curves on surfaces is to decide if a
given closed curve can be contracted to a point, or more precisely to a constant curve.
This is sometimes referred to as the contractibility problem. More generally, we can
ask whether two closed curves on a surface are related by a continuous deformation.
This question has two variants: we may or may not require the curves to share a given
point that remains fixed during the deformation. Note that the problem with fixed
point has an obvious reduction to the contractibility problem. Indeed, two curves c , d
are homotopic with fixed point if and only if the concatenation c ·d −1 is contractible.
Without the fixed point requirement, that is when the curves are allowed to move
freely on the surface, the problem is known as the transformation problem and can
be expressed as a conjugacy problem. To see this, choose a point v on a surface S
and suppose that c and d are homotopic1. We can deform c and d so that each of
them passes through p . The resulting curves are still homotopic. In other words, there
is a continuous mapping h : S1× [0,1]→ S such that h S1×{0} = c and h S1×{1} = d , and
viewing S1×[0, 1] as an annulus, each boundary has a point sent on v by h . We connect
these two points by a simple path a in the annulus. The map h sends this path to a
closed path α. See Figure 1. Cutting the annulus through a we obtain a disk whose

1Homotopy without fixed point is often called free homotopy. For concision, we drop the term free.
In general, it should be clear from the context whether we use free homotopy or homotopy with fixed
point, and we will specify when necessary that the homotopy is with fixed point.
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Figure 1: c and d are homotopic if and only if their homotopy classes are conjugate.

boundary is sent to c ·α ·d −1 ·α−1 which is thus contractible. Hence, c is homotopic
to α · d ·α−1 or, equivalently, the homotopy classes of c and d are conjugate in the
fundamental group π1(S , v ). For the reverse implication, if c and d have conjugate
homotopy classes we can just read Figure 1 from right to left and conclude that c and
d are indeed homotopic.

1 Dehn’s Algorithm

Suppose that S is a reduced combinatorial surface, that is a map with a single ver-
tex and a single face. Its graph G is thus composed of loop edges, each of which
corresponds to a generator of the fundamental group of S . We can directly read the
homotopy class of a closed path in G : the sequence of arcs of the path translates
to the product of the corresponding generators and their inverses. This product is
often viewed as a word on the generators and their inverses, so that the contractibility
problem is the same as the word problem where we ask if a product of generators and
their inverses is the trivial element in the fundamental group of S .

Max Dehn was among the first to establish and exploit the connection between
Topology (the contractibility problem) and Algebra (the word problem). He proposed
a solution to the word problem now known as Dehn’s algorithm [Sti87, paper 5]. Dehn
observed that the lift of G in the universal covering space of S induces a tessellation of
the plane composed of copies of the unique polygonal face of G in S . This tessellation
is actually the Cayley complex of π1(S , v ) where v is the unique vertex of G . This
complex S̃ is relative to the set of generators {βi }i of π1(S , v ) – the homotopy classes of
the loop edges in G – and to their relation F obtained from the unique facial walk of
G in S . The vertex set of S̃ are the elements of π1(S , v ) and there is an (oriented) edge
labelled βi between every α ∈ π1(S , v ) and α ·βi . Finally, disks are glued along each
closed path labelled by F in the resulting graph. If a closed path c in G is contractible
in S , then any of its lifts is a closed path in S̃ . Dehn further claims that
any closed path in S̃ contains either a spur, i.e. an arc followed by its opposite arc, or
more than half of F , i.e. a subpath labelled by some word U such that for some other V
shorter than U , the concatenation U V is a cyclic permutation of F or its inverse.
In both cases c is homotopic to a shorter closed path obtained by removing the spur
in the former case and by replacing the path labelled by U with the complementary
path labelled by V −1 in the latter case. This leads to an algorithm where we inductively
search for spurs or large pieces of F until we obtain a word that we cannot reduce
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anymore. It then follows from Dehn’s claim that c is contractible if and only if this
word is empty.

In order to prove his claim, Dehn notes that the faces of the complex S̃ are arranged
in rings of faces R1, R2, . . ., where R1 is the set of faces incident with a given vertex2 v0 of
S̃ and Ri+1 is the set of faces not in Ri sharing a vertex with the external boundary of Ri .
Remark that a face of Ri+1 has at most two vertices in Ri . Hence, if S is an orientable
surface of genus g ≥ 2, each face has 4g sides and a face of a ring has at least 4g −2> 2g
vertices on its external boundary. Consider now a closed path c̃ without spurs and
passing through v0. Let i be maximal such that c̃ contains a vertex of the external
boundary of Ri . Figure 2 illustrates a factious case of a relation of length 6. Since c̃

v0

R2

c̃

Figure 2: The faces of the complex S̃ are arranged in rings of faces.

has no spurs it is easily seen that it contains the whole intersection of a face with the
external boundary of Ri . The previous remark allows to conclude the claim.

Dehn’s algorithm has a simple implementation that runs in O (g |c |) time where g
is the genus of S . A more careful implementation with O (g + |c | log g ) time complexity
was described by Dey and Schipper [DS95]. Finally, optimal O (g + |c |) algorithms were
proposed [LR12, EW13]. We shall describe these last approaches to the contractibility
and deformation problems, not so far from Dehn’s original approach but including
more recent techniques borrowed from geometric group theory.

2 van Kampen Diagrams

2.1 Disk Diagrams

A useful tool concerning contractible curves is provided by the so called van Kampen
diagrams. Such diagrams bear different names in the litterature, among which disk
diagrams and Dehn diagrams are the most common. Intuitively, a disk diagram
allows to express the combinatorial counterpart of the following characterization of
contractible loops in a topological space X : a loop S1 = ∂ D2 → X is contractible if
and only if it extends to a continuous map D2→ X , where D2 is the unit disk. Given a
combinatorial map M with graph G , a disk diagram over M is a combinatorial sphere

2In his original work, Dehn defines R1 as a single face.
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D with a marked outer face, and a labelling of the arcs of D by the arcs of M such
that opposite arcs are labelled by opposite arcs and such that every facial walk of D
that is not the outer face is labelled by some facial walk of M . In other words, D is a
gluing of faces and edges of M that is homeomorphic to the complement of an open
disk in a sphere. For instance, this complement could be a tree. In general, it is a
tree-like arrangement of topological closed disks connected by trees. The facial walk
of the outer face of D is denoted by ∂ D . The diagram is reduced if any two of its inner
faces (i.e. not the outer one) sharing a vertex v are labelled by facial walks that are not
inverse to each other when starting the facial walks at v .

Lemma 2.1 (van Kampen, 1933). A closed path c in M is contractible if and only if it is
the label of the outer facial walk of a reduced disk diagram over M .

The proof uses the intuitive fact that homotopic closed paths are combinatorially
homotopic, where a combinatorial homotopy is a sequence of elementary homo-
topies that consist in either inserting or removing a spur, or replacing a subpath of a
facial walk by the complementary subpath. See Theorem 4.7 in the previous lecture
notes.

PROOF OF LEMMA 2.1. We first prove the existence of a not necessarily reduced disk
diagram. Let c0 = 1→ c1→ ·· · → ck = c be a sequence of k elementary homotopies
attesting the contractibility of c , where 1 denotes a constant path. By induction on
k , we may assume the existence of a disk diagram D such that ∂ D is labelled by ck−1.
There are three cases to consider.

• If ck−1→ ck consists in inserting a spur a a−1, then we can form a disk diagram
for ck by attaching a pendant edge labelled with a to the boundary of D .

• If ck−1→ ck consists in removing a spur, then either this spur corresponds to two
consecutive arcs of ∂ D with distinct edge support or it corresponds to the two
arcs of a single pendant edge. In the former case, we form a disk diagram for
ck by gluing the two arcs along ∂ D . In the latter case, we contract the pendant
edge.

• Otherwise, ck−1→ ck consists in the replacement of a subpath p by a subpath
q such that p q−1 is a facial walk of M . We then perform a subdivision of the
outer face of D , inserting a new edge between the extremities of p . The new
outer face is chosen among the two new faces as the one not bounded by p . We
next subdivide the new edge k −1 times, where k is the number of arcs of q . We
finally extend the labelling trivially by sending the subdivided edge to the edges
of q . This amounts to glue a face with facial walk p q−1 along p on D .

If the resulting diagram is not reduced, then there are two facial walks sharing a vertex
v and labelled by opposite facial walks of M . We “open” D at v and identify the two
facial walks according to the labels of their arcs. This produces a new diagram with two
faces less and does not modify the outer face boundary. We repeat the procedure as
long as the diagram is not reduced. By induction on the number of faces this procedure
must end. Note that the final diagram may have no face, in which case its graph must

http://www.gipsa-lab.fr/~francis.lazarus/Enseignement/compuTopo3.pdf
http://www.gipsa-lab.fr/~francis.lazarus/Enseignement/compuTopo3.pdf
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be a tree corresponding to a closed path that can be reduced to a point by removing
spurs only.

Exercise 2.2. Relates the degree of an inner vertex in a reduced disk diagram over M
with the degree of the corresponding vertex in M .

2.2 Annular Diagrams

There is an analogous notion of annular diagram defined by a combinatorial sphere
with two marked outer faces instead of one.

Lemma 2.3 (Schupp, 1968). Two closed paths c and d in M are homotopic if and only
if there exists a reduced annular diagram over M such that the facial walks of its outer
faces (oriented consistently) are labelled with c and d respectively.

PROOF. By the introductory discussion there exists a path p such that c ·p ·d −1 ·p−1

is contractible. By Lemma 2.1, there exists a disk diagram over M whose boundary is
labelled with c ·p ·d −1 ·p−1. We may identify the subpaths corresponding to p and
p−1 respectively and get an annular diagram whose perforated faces are labelled with
c and d . If the diagram is not reduced, we proceed as in the proof of Lemma 2.1.

3 Gauss-Bonnet Formula

Another interesting tool is given by a combinatorial version of the famous Gauss-
Bonnet theorem. This theorem relates the curvature of a Riemannian surface S (say
a smooth surface embedded into R3) with its Euler characteristic χ , hence a local
geometric quantity with a global topological one. If K is the Gauss curvature of S and
kg is the geodesic curvature along its (smooth) boundary ∂ S then:

∫

S

K ds +

∫

∂ S

kg d`= 2πχ (1)

We can obtain a combinatorial version of this formula using some kind of angle struc-
ture over a combinatorial surface. Given an orientable combinatorial map M = (A,ρ, ι),
we consider an angular assignment of its corners, that is a real function θ defined
over the set of corners. Here, a corner is any pair (a ,ρ(a )), for a ∈ A, of successive arcs
around a vertex. We require that the sum of the angular assignments of the corners of
any face f satisfies

∑

c∈ f

θ (c ) = d f /2−1, (2)

where d f is the degree of the face, i.e. the length of its facial walk. Intuitively, this
condition amounts to assume that the faces are Euclidean polygons if we view an
angular assignment as a normalized angle, measuring angles in terms of parts of a
circle instead of radians. Indeed, the total angle of a Euclidean polygon with d f sides
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is (d f −2)π, which is d f /2−1 when normalized. We then define the curvature of an
interior vertex v as

κ(v ) = 1−
∑

c∈v

θ (c ), (3)

where, c ∈ v indicates that the corner c = (a ,ρ(a )) is incident to the source vertex v of
a . We also define the (geodesic) curvature of a boundary vertex3 v as

τ(v ) = 1/2−
∑

c∈v

θ (c ) (4)

Those curvatures thus measure the angle default with respect to the flat situation
(κ= 1 and τ= 1/2). They can be related to the Gauss curvature of the flat conic surface
Sv with one singularity at v obtained by gluing small isocele triangles, one for each
corner c ∈ v , with angle 2πθ (c ) at v . The boundary of Sv is a broken line so that
Formula (1) should be corrected with the term

∑

w (π−αw ), where w runs over the
boundary vertices of Sv and αw is the interior angle at w . Since the geodesic curvature
of a line segment is zero, Formula (1) becomes

∫

Sv

K ds +
∑

w

(π−αw ) = 2πχ = 2π

Noting that with
∑

w (π−αw ) is the sum of the angles at the corners of v we obtain
∫

Sv
K = 2πκv .

Theorem 3.1 (Combinatorial Gauss-Bonnet —). Let M be a combinatorial map whose
boundary is composed of disjoint simple cycles in the graph of M . Denote by χ the Euler
characteristic of M and by V o ∪V ∂ =V its interior and boundary vertex sets. Then, for
any angular assignment, we have

∑

v∈V o

κ(v ) +
∑

v∈V ∂

τ(v ) =χ

It is possible to drop the condition on the boundary of M using a slightly different
notion of curvature, see Erickson and Whittlesey [EW13]. The above presentation is
inspired by Gersten and Short [GS90] and makes the parallel with the differentiable
version rather transparent.

PROOF. By definition, we compute
∑

v∈V o

κ(v ) = |V o | −
∑

c∈v∈V 0

θ (c ) and
∑

v∈V ∂

τ(v ) = |V ∂ |/2−
∑

c∈v∈V ∂

θ (c )

It follows that
∑

v∈V o κ(v ) +
∑

v∈V ∂ τ(v ) = |V | − |V ∂ |/2−
∑

c∈v∈V θ (c ). By distributing
the corners according to faces rather than vertices and by the angular assignment
requirement (2), we see that

∑

c∈v∈V

θ (c ) =
∑

c∈ f ∈F

θ (c ) =
∑

f ∈F

(
d f

2
−1) =

1

2

∑

f ∈F

d f − |F |

3Formally, a combinatorial surface with boundary is defined by marking some faces as perforated,
and a boundary vertex is any vertex incident to a perforated face.
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where F is the set of faces of M . Since every arc appears in exactly one facial walk,
except for those on the boundary of M , we have:

∑

f ∈F d f = 2|E |−|E ∂ |where E and E ∂

are the set of edges and boundary edges respectively. Since |E ∂ |= |V ∂ |, we conclude
that
∑

v∈V o

κ(v ) +
∑

v∈V ∂

τ(v ) = |V | − |V ∂ |/2− (|E | − |E ∂ |/2)− |F |)

= |V | − |E |+ |F |

4 Quad Systems

From an algorithmic point of view it is more convenient to work with combinatorial
surfaces all of whose faces are quadrilaterals. We call such a surface a quadrangulation
or a quad system. Given a combinatorial surface without boundary, we easily get a
quadrangulation of the same topological surface as follows. We insert a vertex inside
each face and connect this vertex to all the corners of the face. Hence, if a facial
walk has length k we introduce k new edges in the face. This subdivides each face
into triangles. We then delete all the edges of the original graph, thus merging all
the triangles by pairs to form quadrilaterals. In practice, we will also require that the
vertices have a high degree, say at least 8. For a surface of genus g ≥ 2 this is easily
obtained by first reducing the combinatorial surface to a single vertex and a single face
before applying the above quadrangulation process. The resulting quadrangulation
has two vertices, 4g edges and 2g quadrilaterals. Figure 3 shows a reduced surface
and its quadrangulation.

Figure 3: From left to right, a reduced surface is cut-opened and its unique face is
triangulated by inserting a vertex in the center. Triangles of the same color are merged
by deleting the original loop edges.

Lemma 4.1. Let Q be a quadrangulation derived by the previous process from a given
map M without boundary. We can preprocess M in linear time (proportional to its
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number of arcs) so that any closed walk c can be transformed in O (|c |) time into a
homotopic closed walk of size at most 2|c | in Q .

To see this, consider a spanning tree T of the graph G of M . Contracting T gives a
surface M ′ with graph G /T and with a single vertex. Next consider a spanning tree of
the dual graph of M ′ and denote by L the corresponding set of primal edges. Deleting
the edges in L leaves a reduced surface M ′′ and we construct Q by first inserting a new
vertex z in the unique face of M ′′ together with all the edges from z to the corners
of the face. We finally remove the remaining edges of G /T to get Q . Note that any
edge e of G /T is homotopic to the path of length two in Q connecting z to the two
endpoints of e . We can precompute and store these length two paths for each e in
total linear time. Now, given any c , we contract all the occurrences of edges of T in c
to obtain a homotopic closed walk c ′ in M ′. We further replace every remaining edge
by the corresponding length two path to obtain a homotopic closed walk as desired in
Q . This transformation takes O (|c |) time.

Exercise 4.2. Propose a construction of quadrangulation starting from a combinatorial
surface with nonempty boundary. Can you extend Lemma 4.1 accordingly?

5 Reduction to Canonical form

The last and most important ingredient of the homotopy test is the construction
of a canonical representative in each free homotopy class. Given a closed walk in
a quadrangulation, the idea is to shorten the walk as much as possible to obtain
a combinatorial geodesic. As a homotopy class may contain several geodesics, we
further consider the rightmost geodesic to define a canonical representative. Once a
canonical representative has been computed for two given closed walks we can decide
if the walks are homotopic by just checking if their representative are equal up to a
circular permutation. The shortening process is based on successive simplifications
of spurs and brackets as explained below.

5.1 The Four-Bracket Lemma

Let (a1, a2) be a pair of arcs sharing their origin vertex v on a quadrangulation M .
Following the terminology of Erickson and Whittlesey [EW13], we define the turn of
(a1, a2) as the number of corners between a1 and a2 in counterclockwise order around
v . Hence, if v is a vertex of degree d in M , the turn of (a1, a2) is an integer modulo
d that is zero when a1 = a2. The turn sequence of a subpath (ai , ai+1, . . . , ai+ j−1) of a
closed walk of length ` is the sequence of j + 1 turns of (a−1

i+k , ai+k+1) for −1 ≤ k < j ,
where indices are taken modulo `. The subpath may have length `, thus leading to
a sequence of `+ 1 turns. Note that the turn of (a−1

i+k , ai+k+1) is zero precisely when
(ai+k , ai+k+1) is a spur. A bracket is any subpath whose turn sequence has the form
12∗1 or 1̄2̄∗1̄ where t ∗ stands for a possibly empty sequence of turns t and x̄ stands
for −x . Intuitively, if we imagine that every corner of M has a right angle, a bracket
corresponds to a straight path ending with right angles. A quadrangulated disk is
non-singular if its boundary is a simple cycle of its graph.
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Lemma 5.1 (Four-bracket —, [GS90, EW13]). Let D be a non-singular quadrangulated
disk all of whose interior vertices have degree at least four. Then, the boundary of D
contains at least four brackets.

Figure 4 illustrates the Lemma.

Figure 4: The quadrangulated disk has four highlighted brackets. Can you find them
all?

PROOF. Consider the constant angular assignment 1/4 over D . By the Gauss-
Bonnet theorem 3.1, we have

∑

v∈i n t D κ(v ) +
∑

v∈∂ D τ(v ) = χ(D ) = 1. By (3), every
interior vertex has non-positive curvature. It follows that

∑

v∈∂ D

τ(v )≥ 1 (5)

Remark that τ(v ) = (2− cv )/4 where cv is the number of corners incident to the bound-
ary vertex v . Call v convex, flat or concave if cv = 1, cv = 2 or cv ≥ 3 respectively. In
other words v is convex, flat or concave if its curvature is respectively 1/4, zero or
negative. Inequality (5) implies that the boundary of D contains at least four more
convex vertices than concave vertices. The lemma easily follows.

Corollary 5.2. A nontrivial contractible closed walk in a quadrangulation all of whose
interior vertices have degree at least four contains either a spur or a bracket.

PROOF. Suppose that a nontrivial contractible closed walk c has no spurs. By the
van Kampen Lemma 2.1, c is the label of the boundary of a reduced disk diagram D .
Let H be the dual graph of D : it has one dual vertex per quadrilateral of D and one dual
edge for each pair of quadrilaterals sharing an edge. If H is connected then D is non-
singular. Indeed, if the boundary of its outer facial walk ∂ D was not a cycle it would
contain a degree one vertex, which would contradicts that c has no spurs. We can
thus apply the four-brackets lemma 5.1 to conclude that ∂ D has at least one bracket.
However, the turn t at a vertex of ∂ D is the same as the turn of the corresponding
vertex in c (up to a multiple of the degree of that vertex in the quadrangulation). It
follows that c has also a bracket. If H is not connected, then D consists of a tree-
like arrangement of non-singular disks connected by trees through cut vertices. This
arrangement has a “degree one” non-singular disk connected to the rest through a
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single cut vertex. By the previous Lemma 5.1 this disk has four brackets, two of which
do not contain the cut vertex. These two brackets thus correspond to brackets in c .

Exercise 5.3. Show that we can actually claim the existence of a spur or four brackets
in Corollary 5.2.

5.2 Bracket Flattening

A bracket flattening consists in replacing a bracket and the two incident edges with the
“straight line” between their endpoints. Some care must be taken when the incident
edges of the bracket share their endpoints or when these edges are part of the bracket.
Figure 5 depicts the different cases. Corollary 5.2 provides a practical algorithm to test
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Figure 5: Left, a typical bracket flattening. Middle, the edges incident to the bracket
share their endpoints. Right, the bracket covers the whole closed walk.

if a given closed walk c is contractible: remove the spurs and flatten the brackets until
there is no more. Then c is contractible if and only if the resulting walk is reduced to a
vertex. Note that the non-typical bracket flattening (Figure 5, Right) may only occur
when c is non-contractible (why?).

5.3 Canonical representatives

A homotopy class may contain several closed walks without spurs and brackets. In
order to get a canonical representative in each homotopy class we further push such
reduced walks as much as possible “to their right”. Say that a vertex of a walk is convex
if its turn is 1 in the turn sequence of the walk. If a closed walk c contains a convex
vertex v we consider the maximal subpath including v whose turning sequence has the
form x 2∗12∗y , where x , y 6= 2. This subpath, say p , bounds an L-shaped sequence of
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quadrilaterals that lies to its right. Replacing p by the complementary path bounding
the sequence of quadrilaterals gives a closed walk homotopic to c with one less convex
vertex. Note that this replacement does neither introduce a bracket nor a spur. Some
care must again be taken when p covers c . See Figure 6 for all the possible typical and
non-typical configurations. A right push reduces the number of convex vertices by
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Figure 6: The different configurations for a right push.

one, so that only a linear number of pushes can be applied. A last exceptional case
occurs when the turn sequence of c is composed of 2’s only. We also apply a right push
in this case, which transforms the turn sequence into a sequence of 2̄ as on Figure 7.
When no right pushes apply, the closed walk is said reduced, or in canonical form.

2
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2

2

22
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-2

-2-2-2

-2-2

Figure 7: In case all the turns are equal to 2, we push the walk to the right to obtain a
sequence 2̄∗ of turns.

Proposition 5.4. Let M be a quadrangulation all of whose vertices have degree at least
five. Then each homotopy class contains a unique reduced closed walk.

PROOF. Let c and d be homotopic reduced closed walks. We need to show that
c = d . Following Lemma 2.3 we consider a reduced annular diagram A for c and d .
We first claim that the two boundaries of A are simple. Otherwise, one boundary has a
cut vertex that separates A into a smaller annular part A′ and a disk part D connected
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to A′ through a single cut vertex. By the four-brackets lemma, the boundary of D has
one (in fact at least two) bracket disjoint from this cut vertex. In turn, this bracket
would appear in c or d , contradicting the hypothesis that c and d are reduced.

• If the two boundaries of A have a common vertex then cutting through that
vertex gives a disk diagram D ′ bounded by (circular permutations of) c and d .
This diagram is a tree-like arrangement of non-singular disks connected by trees
through cut vertices. For convenience, we also call cut vertices the two common
endpoints of c and d . If a non-singular disk is incident to a single cut vertex,
then it is bounded by a subpath of one of c or d . By the four-bracket lemma
this subpath would contain a bracket, in contradiction with the reduction hy-
pothesis. It follows that D ′ is a linear sequence of non-singular disks connected
by simple paths (otherwise c or d would have a spur). We claim that none of
those non-singular disks can have an interior vertex. Otherwise, considering the
constant angular assignment 1/4 over D ′, this interior vertex would have nega-
tive curvature. An argument similar to the proof of the four-bracket lemma 5.1
shows that the boundary of D ′ would contain five brackets, one of which not
incident to any cut vertex. This would again lead to the contradiction that c or d
has a bracket. The dual graph of each non-singular disk is thus a tree. However,
no matter the shape of this tree and no matter how its boundary is split one of
the resulting boundary paths would contain a bracket or a convex vertex. In
both cases this would contradict the fact that c and d are reduced. It follows
that D ′ has no non-singular disk, hence is a simple path, implying that c = d .

• Suppose now by way of contradiction that the two boundaries of A are disjoint.
The proof of the four-bracket lemma applies to an annulus with a interior vertex
of negative curvature to show the existence of a bracket. It follows that as above
that A has no interior vertex. Indeed, we can mimic the proof of the four-bracket
lemma for an annulus with a vertex of negative curvature to show the existence
of a bracket.) The dual graph of A is thus a single cycle with some attached trees.
It must actually be a cycle, since otherwise one of the boundaries of A would
have a bracket. This cycle has to go straight without bending since otherwise c
or d would have a convex vertex or a bracket. (This last case occurs even with
a single bend as on Figure 5, Right.) It follows that one of the boundaries of A
has 2-turns only as on right Figure 7, contradicting that c and d are reduced. In
any case we have reached a contradiction, so that the boundaries of A cannot
be disjoint.

A reduced closed walk can thus play the role of canonical representative for its ho-
motopy class.

6 The Homotopy Test

We now have all the necessary ingredients to perform a linear time homotopy test.
Thanks to Lemma 4.1, we can assume given two closed walks in a quadrangulation. We
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compute the canonical form of each closed walk by first removing spurs and brackets
as described in Sections 5.2, then applying right pushes to remove convex vertices as
explained in Section 5.3. We claim that this can be done for each closed walk in time
proportional to its length.

Theorem 6.1. The canonical representative of a closed walk c in a quadrangulation,
all of whose vertices have degree at least five, can be computed in O (|c |) time.

PROOF. We first shorten c as mush as possible by removing spurs and flattening
brackets incrementally as we traverse c from a chosen basepoint4. In order to facilitate
the analysis, we consider that each spur amounts to delete two arcs from c and that
each bracket flattening amounts to delete its two side arcs and to move the edges of
the bracket by translating them by one quad. This way, every arc of the final closed
walk can be traced back to an arc of c .

We use a stack to store the currently traversed subpath of c and maintain the
invariant that this subpath does not contain spurs or brackets. We start with an empty
stack corresponding to the path reduced to the basepoint and incrementally push
the successive arcs of c . Each time an arc a is pushed on top of the stack we check in
constant time5 if a forms a spur or a bracket with the previous arcs on the stack and
update the stack accordingly. We denote by TS the turn sequence of the subpath of c
stored in the stack.

• If a forms a spur with the previous arc, i.e. if TS has a suffix of length 3 of the
form x 0y , we simply pop a and the previous arc out of the stack. This amounts
to replace x 0y by the suffix x + y (of length one) in TS.

• If a closes a bracket of length k + 1, i.e. if TS has a suffix of the form x 12k 1y
or x 1̄2̄k 1̄y , we pop off the k + 1 arcs of the (flat part of the) bracket as well as
its two incident arcs and push the flat part, translated by one quad, again into
the stack. See Figure 5, left. This replaces the suffix of TS by (x −1)2̄k (y −1) or
(x +1)2k (y +1), respectively.

After this update, the stack clearly contains a path without spurs or brackets. Call a
bracket positive if its turn sequence has the form 12∗1, and negative otherwise.

Claim 1. Suppose that an arc a is moved twice because of two successive bracket
flattening, possibly separated by spur removals. Then, these brackets must have the
same sign. Moreover, the supports of the brackets, considered as arcs of c , may share
at most one arc, this arc being the first arc of the first flattened bracket and the last arc
of the second one.

PROOF OF THE CLAIM. Suppose otherwise and assume without loss of generality
that the first bracket is positive. For some turn sequence X , TS has the form X x 12k 1y

4In [EW13], a so-called run-length encoding of the turn sequence of c is used to perform the bracket
flattening in linear time. The present algorithm does not use any specific encoding and only uses a stack
as a data-structure. This simplification was suggested to us by Saul Schleimer in a Dagstuhl workshop.

5E.g., one can maintain a flag to record the fact that turn sequence of the path in the stack ends with
12∗ or 1̄2̄∗.
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just before the positive bracket flattening and X (x −1)2̄k (y −1) just after. When the
negative bracket occurs, the turn sequence must have the form X (x −1)2̄`1̄y ′. Note
that x 6= 0 since TS does not contain 0 turn after an update. It follows that x −1= 2̄, so
that X must have a suffix of the form 1̄2̄m . This would however implies that X x 12k 1y
contains a negative bracket (ending with x = 1̄), a contradiction. See Figure 8, middle.

b

b'
Figure 8: The flattening of the positive bracket b can not be part of a negative bracket,
as the smaller bracket b ′ should first be flattened.

By the preceding paragraph, the successive brackets have the same sign that we
assume positive. If the two brackets shared two arcs, then the turn at the vertices in
the flat part between these two arcs would be 2̄ and 2 at the same time. This would
imply that they have degree 4, as illustrated in Figure 9, left, in contradiction with the
hypohesis of the theorem. Clearly, the shared arc, if any, must occur as the first arc
of the first flattened bracket and as the last arc of the second one, or vice-versa. This
last case is however impossible as a third bracket would occur in-between the two,
and should have been flattened before the second one. See Figure 9, middle. The case

b1

b2
b3

b1

b2

b3

b1

b2

Figure 9: Left, the 3-bracket b1 share three arcs with the 6-bracket b2, implying that
two (red) vertices have degree four. Middle, if the arc shared by the 3-bracket b1 and
the 2-bracket b2 is the last arc of b1, then a bracket b3 must occur in-between b1 and
b2. Right, an arc may belong to more than 2 brackets if the intermediate brackets have
length 1.

where the brackets are both negative can be dealt with analogously.

Claim 2. Suppose that an arc a of c is moved thrice because of three successive bracket
flattening, possibly separated by spur removals. Then the second bracket is a 1-bracket,
i.e. has length one.

PROOF OF THE CLAIM. By Claim 1 the three brackets have the same sign that we as-
sume positive. The negative case follows similarly. According to Claim 1, the supports
in c of the first and second brackets intersect along a single arc, thus corresponding to
a . Moreover a must occur as the last arc of the second bracket. For the same reason,
the supports in c of the second and third brackets intersect along the single arc a ,
occurring as the first arc of the second bracket. It ensues that the second bracket has a
single arc. See Figure 9, right.



REFERENCES 15

In practice, we traverse c twice in order to remove spurs or brackets that would contain
the basepoint in their interiors. Some care must be taken to handle the non-typical
case as on Figure 5, when a bracket covers the whole of c .

The time spent to traverse c twice is proportional to the number of arcs deletions
and moves. According to Claim 2, if an arc is moved several times, then all the brackets
that triggered the moves have length one except possibly the first en last ones. Since
each 1-bracket corresponds to a single arc of c , it follows that total number of arc
moves is bounded by 2|c | plus the total number of 1-brackets flattened during the
traversal. Now, a bracket flattening decreases the number of edges by two so that their
total number is bounded by |c |/2. As every arc is morever deleted at most once, we
conclude that the number of arc deletions and moves is linear in |c |.

Once c has no more spurs or brackets we obtain a geodesic that needs to be pushed
to its right in order to remove convex vertices as described in Section 5.3. A right push
transforms a subpath of the geodesic into another subpath of the same length without
convex vertices. Morover, in the event where a 2-turn appears after a right push, this
turn must be surrounded by 1̄-turns or 2̄-turns in the resulting turn sequence. See
Figure 6, left. It follows that none of the vertices of this subpath will be part of an
L-shaped subpath, hence will not be pushed again. We can thus remove all the convex
vertices by right pushes using a simple traversal of c without backtracking. Again,
some care must be taken to handle the non-typical cases as on Figure 6. The total time
needed to obtain a rightmost geodesic is clearly linear.

Corollary 6.2. Given two closed walk of length at most ` in a combinatorial map of
size n we can decide if they are homotopic in O (n + `) time.

PROOF. According to Lemma 4.1, we can reduce the combinatorial map to a quan-
drangulation in O (n ) time and get closed walks homotopic to the given one in O (`) time.
By Theorem 6.1 we can compute the canonical form of the walks in O (`) time. Now
these canonical forms, say c and d , are homotopic if and only if one is a circular permu-
tation of the other. This can be tested in linear time by checking whether c is a substring
of d ·d thanks to the Knuth-Morris-Pratt string searching algorithm [KMP77] [CLRS02,
Sec. 32.4].

This linear time homotopy test has been implemented and is available as a package
of the C++ CGAL library.
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