CR13: Computational Topology Correction of Exercises \#3

Proposition 0.1. The complete graph K_{7} does not embed on the Klein bottle.
Proof. Let us denote the vertices of K_{7} by $0,1,2,3,4,5,6$. Assume by contradiction that K_{7} embeds on the Klein bottle. Then this embedding is a triangulation, by an Euler characteristic argument. Thus 0 is adjacent to six triangles, whose third sides form a 6 -cycle. Without loss of generality, this 6 -cycle is 123456 . Then vertex 1 is surrounded by $602 x z y$ (in this order), vertex 2 by $301 x w u$, and thus x has to be 4 or 5 . Let us first assume that it is 4 . Then, looking at the neighborhood of 1 and 6 , we see that y has to be 3, and the neighborhoods of the other vertices can be entirely determined in the same manner. On the other hand, if x is 5 , we can figure out the rest of the neighborhoods similarly, and we obtain a triangulation that is the same as the previous one (up to relabelling).

This way, we prove that if K_{7} triangulates a surface, then this triangulation is fixed (up to relabellings of vertices). In particular, since K_{7} triangulates the torus, it can not triangulate the Klein bottle.

