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1 What is a Map?

Topologically, a map corresponds to a cellular embedding of a graph in a 2-dimensional
manifold: This is a drawing of a graph in a topological surface without crossing of the
edges such that the embedded graph dissects the surface into topological open discs.
Figure 1 shows a cellular embedding in a genus two surface. Up to homeomorphism,

Figure 1: The complement of the graph in the surface is a disjoint union of open discs.

such a cellular embedding can be described by the graph together with the circular
ordering of the edges incident to each vertex. These are purely combinatorial data
referred to as a combinatorial map, a combinatorial surface, a cellular embedding
of a graph, or just a map.

The theory of combinatorial maps was developed from the early 1970’s in two paral-
lel and independent directions. Both developments acknowledge the original works of
Heffter [Hef91, Hef98] and Edmonds [Edm60] for the notion of combinatorial descrip-
tion of a graph embedded on a surface. On the more abstract side, mathematicians
have succeeded to make beautiful connections between analysis, topology and algebra,
going from Riemann surfaces and their coverings to algebraic curves and Galois theory
of field extensions. Those connections were crystallised by Grothendieck through the
notion of dessins d’enfants thanks to Belyi’s theorem (see the gentle introduction by
Zvonkin [Zvo]).

On the combinatorial side, maps appeared as the adequate formalism for topologi-
cal graph theory such as exposed in a dedicated volume of the Cambridge Encyclopedia
of mathematics [BW09]. Applications range from colouring problems, such as the four
colour theorem and its generalization to higher genus surfaces, to embedding char-
acterizations generalizing Kuratowski’s theorem, up to the modern structural graph
theory of Robertson and Seymour. The monograph by Mohar and Thomassen [MT01]
is another important reference representing this trend. Pushing the combinatorial
aspect to its limit, Tutte [Tut73, Tut79] was among the first to develop an axiomatic
theory of combinatorial surfaces. His aim was to banish any reference to topology
while getting equivalent results such as the Jordan’s curve theorem [Tut79, Sta83, VL89],
using combinatorial properties only. This point of view lead Tutte [Tut79] “. . . to es-
chew diagrams . . . because of their topological flavour”. This might appear as a rather
extreme attitude, although necessary when it comes to implementing algorithms.

A third development appeared in the early 1990’s concerning curves on surfaces
with a strong algorithmic objective [VY90, DS95]. Those works were recognized as
part of Computational topology [Veg97, DEG98], a branch of Computational geometry
focusing on algorithmic problems related to the topology of discrete structures. The



1. What is a Map? 3

point of view of Tutte is especially well suited to these computational aspects.

1.1 The category of oriented maps

We start with the description of combinatorial orientable surfaces. Although they can
be considered as special cases of general surfaces, orientable or not, they deserve their
own treatment as a simpler introduction to combinatorial surfaces. Their connection
with Riemann surfaces through the theory of dessins d’enfants also provides them with
a well established status. Indeed, Riemann surfaces are naturally oriented: such a
surface is defined by a complex analytic atlas whose transition maps have positive
Jacobians by the Cauchy-Riemann equations.

Definition 1.1. An oriented map is a triple M = (A,ρ, ι)where

• A is a set whose elements are called arcs,

• ρ : A→ A is a permutation of A,

• ι : A→ A is a fixed point free involution.

The permutationsρ and ι generate a subgroup of the permutation group of A called the
cartographic group or the monodromy group of M (see below for an explanation of
the terminology). The oriented map M has an associated graph G (M ) = (A/〈ρ〉, A, o , ι)
whose vertices are the cycles of ρ, i.e., the orbits of the cyclic group of permutations
〈ρ〉 generated by ρ. The origin of an arc a is defined as the orbit o (a ) = 〈ρ〉a . An edge
is an orbit of ι. We will equally refer to a vertex or edge of G (M ) as a vertex or edge of
M . We denote the set of vertices of M by V (M ) and its set of edges by E (M ). A map
is connected if its graph is connected, or equivalently, if its monodromy group acts
transitively on its arcs. All the surfaces will be assumed connected in this section.

A face of M is a cycle of the permutation ρ ◦ ι. The face of an arc a is denoted F (a )
and the set of faces of M is denoted by F (M ). The star of a vertex or face x , denoted
Star(x ), is the set of arcs in the corresponding cycle. In particular, Star(x ) = F (a ) for
x = 〈ρ ◦ ι〉a . Since vertices and faces are defined as orbits, they are formally the same
as their star. We will nonetheless avoid to say that an arc belongs to a vertex x and
rather say that it belongs to Star(x ), or is incident to x . The size of Star(x ) is the degree
of x .

Remark 1.2. It is sometimes useful to allow the arc involution ι to have fixed points. In
this case some ι orbits may be reduced to a single arc. We do not count those singleton
orbits in E (M ). An arc invariant by ι is said self-opposite, or self-inverse. Interpreting
M as a cellular embedding of its graph, a self-opposite arc corresponds to an edge
folded back on itself.

The permutation ρ is sometimes designated as a rotation system as it encodes
the cyclic ordering of the arcs incident to a vertex. An oriented map can equivalently
be described as a pair (G ,ρ)where G is a graph and ρ is permutation on the arcs of G
whose cycles are the stars of the vertices of G .

Every oriented map M can be realized as a cellular embeddingηM : |G (M )| ,→ S (M ),
where |G (M )| is the topological realization of G (M ) and S (M ) is an orientable surface
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that is compact whenever M has a finite number of edges. There are two basic ways
of visualizing this cellular embedding. One way is to consider for each face of M
an oriented polygon with one side per arc in the corresponding face cycle. These
polygons are further glued so that the sides corresponding to an arc and to its opposite
are identified (see Figure 2). The graph embedding is given by the 1-skeleton of the
resulting cellular decomposition. Another way consists in thickening the graph of

a b

cd d

d

a

a

b

b

c

c

Figure 2: A cellular embedding associated to the map (A,ρ, ι) with A = {a , b , c , d },
ρ = (a , c , d , b ) and ι = (a , d )(c , b ). The arcs are represented as colored half edges.

the map to transform it into a ribbon graph. We obtain a surface with boundaries
that we can close with discs (see Figure 3). Here, the graph embedding is given by the
inclusion of the graph into its thickening.

Figure 3: The same map as above. The unique vertex of the corresponding graph
is replaced by a disc and each edge is replaced by a strip attached to the disc in the
cyclic order of ρ. The resulting surface with boundary is closed with a single disc
corresponding to the unique face of the map.

Conversely, every cellular embedding η : |G | ,→ S of a graph G into a topological
oriented surface S determines an oriented map M (η) = (G ,ρ)where ρ is the rotation
system corresponding to the oriented cyclic orderings of the vertex stars induced by
the embedding.
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Proposition 1.3. The above topological realizations of M through polygon gluing or
graph thickening give equivalent cellular embeddings up to homeomorphism. Moreover,
those topological realizations are inverse to combinatorial representations of cellular
embeddings in the following sense.

• For a cellular embedding η : |G | ,→ S, the realization ηM : |G (M (η))| ,→ S (M (η))
is equivalent to η: There is a homeomorphism S ' S (M (η)) so that the diagram

|G |
I d ��

η // S
' ��

|G (M (η))|
ηM // S (M (η))

commutes.

• Any oriented map M is isomorphic to M (ηM ). In other words, the two maps are
equal up to a renaming of the arcs.

This proposition is essentially stated here to guide the intuition of the reader
that would encounter maps for the first time. Its presence somehow contradicts the
implicit credo that a purely combinatorial theory of surface can be developed without
reference to topology. But, possibly in contradiction with Tutte, we strongly believe in
the benefit of diagrams and topological intuition. A proof of the proposition can be
found in Mohar and Thomassen’s book [MT01]or Bryant and Singerman’s foundational
paper [BS85] for topological surfaces and in [GGD12] for the complex analytic case.

Guided by the topological realization of a map, we have

Definition 1.4. The Euler characteristic of a finite oriented map is the integer

χ(M ) = |V (M )| − |E (M )|+ |F (M )|

Its genus is the non-negative integer g (M ) = 1−χ(M )/2.

Exercise 1.5. Show that g (M ) is indeed a non-negative integer.

We now define the morphisms between oriented maps. Intuitively, a morphism
of combinatorial surfaces corresponds to a branched covering of their topological
realizations. This intuition is made more precise in Section 6.1.

Definition 1.6. A morphism of oriented maps (A,ρ, ι)→ (B ,σ,  ) is a function f : A→
B that commutes with the rotation systems and with the opposite operators, i.e., such
that f ◦ρ =σ ◦ f and f ◦ ι =  ◦ f .

Remark 1.7. For maps with self-opposite arcs, it follows from the above definition that
a morphism sends self-opposite arcs to self-opposite arcs.

1.2 The Riemann-Hurwitz formula
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Lemma 1.8. Any morphism f : (A,ρ, ι) → (B ,σ,  ) is onto and sends stars to stars
surjectively. Moreover, for any vertex or face x of finite degree of the map (A,ρ, ι), the
restriction f : Star(x )→ f (Star(x )) of f is isomorphic to the quotient

Z/(ex d )Z → Z/dZ
i mod ex d 7→ i mod d

where d is the size of f (Star(x )) and ex is a positive integer called the ramification index
of f at x .

PROOF. Let a ∈ A be an arc. By connectedness, its orbit by the monodromy group
satisfies 〈ρ, ι〉a = A. Since f commutes with the rotation systems and the opposite
operators, we have f (〈ρ, ι〉a ) = 〈σ,  〉 f (a ) = B . Thus f is onto. We also have for any
integer n that f ◦ρn (a ) = σn ◦ f (a ). It follows that the size of the orbit 〈ρ〉a , i.e.,
the degree of the vertex x = o (a ), is a multiple of the degree d of the vertex o ( f (a )).
Whence deg(x ) = ex d for some positive integer ex and the lemma follows for x a vertex.
An analogous property holds when replacing ρ by ρ ◦ ι and σ by σ ◦  proving the
lemma when x is a face.

Thanks to this lemma we can define the image by f of a vertex or face x of the
map M = (A,ρ, ι) as the vertex or face of N = (B ,σ,  ) whose star is f (Star(x )). In
particular, we can associate to f a graph morphism f : G (M )→G (N ). Note that this
graph morphism is dimension preserving: a vertex or arc is mapped to a vertex or arc,
respectively.

Exercise 1.9. Check that a morphism f : (A,ρ, ι)→ (B ,σ,  ) induces a group epimor-
phism f̂ : 〈ρ, ι〉� 〈σ,  〉 between the corresponding monodromy groups such that
f ◦θ = f̂ (θ ) ◦ f for all θ ∈ 〈ρ, ι〉.

Lemma 1.10. All the arc fibers of a morphism f : (A,ρ, ι)→ (B ,σ,  ) have the same size
called the degree of f , and denoted by deg( f ).

PROOF. Let b , b ′ ∈ B . Since 〈σ,  〉 acts transitively, there is some τ ∈ 〈σ,  〉 such
that b ′ =τ(b ). Following Exercise 1.9 we can write τ= f̂ (θ ) for some θ ∈ 〈ρ, ι〉. Now,
the equation f (a ) = b is equivalent to τ( f (a )) =τ(b ), i.e., f (θ (a )) = b ′. It follows that
θ establishes a bijection from f −1(b ) to f −1(b ′).

Proposition 1.11 (Index formula). Let f : (A,ρ, ı )→ (B ,σ,  ) be a morphism of finite
oriented maps. For any vertex or face w of (B ,σ,  ), we have

∑

f (v )=w

ev = deg( f )

PROOF. Suppose that w is a vertex and consider an arc a ∈ Star(w ). We partition
f −1(a ) according to vertex stars: f −1(a ) =

⋃

f (v )=w ( f
−1(a )∩ Star(v )). Because Star(v )

wraps around Star(w ) exactly ev times, each intersection f −1(a )∩Star(v ) contains ev

arcs (see Figure 4). The proposition then follows from Lemma 1.10. Replacing vertices
by faces gives the formula when w is a face.
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ev = 2

v v ′

ev ′ = 1

f

a
w

Figure 4: The preimage of the star of w can be decomposed into stars.

Theorem 1.12 (Riemann-Hurwitz Formula). For a morphism f : M →N of degree n
of finite oriented maps we have

χ(M ) = n .χ(N )−
∑

v∈V (M )∪F (M )

(ev −1)

PROOF. We know from Lemma 1.10 and Remark 1.7 that |E (M )| = n |E (N )|. Also,
by the Index formula, we have for every vertex or face w of N that n =

∑

f (v )=w ev =
∑

f (v )=w (ev −1) + | f −1(w )|. So,

χ(M ) = |V (M )| − |E (M )|+ |F (M )|
=

∑

w∈V (N )

| f −1(w )| −n |E (N )|+
∑

w∈F (N )

| f −1(w )|

=
∑

w∈V (N )∪F (N )

 

n −
∑

f (v )=w

(ev −1)

!

−n |E (N )|

= n (|V (N )|+ |F (N )|)−n |E (N )| −
∑

v∈V (M )∪F (M )

(ev −1)

2 Basic Operations and Classification

One advantage of the map formalism is the ability to modify the embedded graph
rather easily. A notion of elementary modification gives rise to combinatorial equiva-
lence between maps that shall replace topological homeomorphisms and allows for a
classification of surfaces.

2.1 Modifying maps

2.1.1 Dual maps

Intuitively the dual of a map is obtained by inverting the roles of vertices and faces.
The topological counterpart of the dual map is obtained by placing a (dual) vertex at
the center of each face of the (primal) map, adding an edge between two dual vertices
if their corresponding face share an edge. Figure 5 illustrates the dual of a spherical
map.
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ρ

ρ∗

Figure 5: A map on the sphere (with plain line edges) with rotation system ρ and its
dual map (with dashed line edges).

Definition 2.1. The dual of the map M = (A,ρ, ι) is the map M ∗ = (A,ρ ◦ι, ι). The dual
graph of M is the graph G ∗(M ) = G (M ∗) of the dual map. The vertices of the dual
graph are the cycles ofρ◦ι, i.e., the faces of M . More precisely, G ∗(M ) = (F (M ), A, o ∗, ι)
where o ∗(a ) = F (a ).

It is immediate that

Lemma 2.2. M and M ∗ have the same monodromy group. In particular, M is connected
if and only if M ∗ is connected.

Lemma 2.3. (M ∗)∗ =M

2.1.2 Edge contraction

The basic operations of contraction, deletion or subdivision of an edge in a graph ex-
tend naturally to embedded graphs.

Definition 2.4. Let M = (A,ρ, ι) be a connected map with at least two edges. If e =
{a , a−1} is a non-loop edge (i.e., o (a ) 6= o (a−1)) of M , the contraction of e transforms
M to a map M /e = (A \e ,ρ′, ι′)where ι′ is the restriction of ι to A \e andρ′ is obtained
by merging the cycles of a and a−1, i.e.,

∀b ∈ A \ e , ρ′(b ) =







ρ(b ) if ρ(b ) 6∈ e ,
ρ ◦ ι(ρ(b )) if ρ(b ) ∈ e and ρ ◦ ι(ρ(b )) 6∈ e ,
(ρ ◦ ι)2(ρ(b )) otherwise.

(1)

Note that the last case in (1) may only occur if e has a degree one endpoint. In this
case, that is when ρ(b ) ∈ e and ρ ◦ ι(ρ(b )) ∈ e , (ρ ◦ ι)2(ρ(b )) reduces to ρ2(b ). Figure 6
shows the effect of an edge contraction. Let τ be the transposition of a and a−1 in A.
One may observe that the contraction of the edge {a , a−1} amounts to first replace the
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b
a

ρ

ι
a−1

ρ′
bc c

Figure 6: The contraction of a non-loop edge. ρ(b ) = a =⇒ ρ′(b ) =ρ ◦ ι(ρ(b )) = c .

pair of permutations (ρ, ι) by (ρ ◦τ,τ ◦ ι) and then removing {a , a−1} from their cycle
decompositions.

Exercise 2.5. Show that G (M /e ) =G (M )/e . (Recall the edge contraction for graphs
from the preceding lecture notes.)

Lemma 2.6. If M is a connected map with at least two edges and e = {a , a−1} is a
non-loop edge of M , then M /e is connected and has the same Euler characteristic as
M .

PROOF. Put M = (A,ρ, ι) and M /e = (A′ = A \ e ,ρ′, ι′). It is easily seen that the
two orbits 〈ρ〉a and 〈ρ〉a−1 are merged into a single cycle of ρ′ after removing a and
a−1 from this cycle. It follows that |V (M /e )|= |V (M )| −1. (One may also argue with
Exercise 2.5.) On the other hand, from (1) we get for b ∈ A′:

ρ′ ◦ ι′(b ) =







ρ ◦ ι(b ) if ρ ◦ ι(b ) 6∈ e ,
(ρ ◦ ι)2(b ) if ρ ◦ ι(b ) ∈ e and (ρ ◦ ι)2(b ) 6∈ e ,
(ρ ◦ ι)3(b ) = otherwise.

The faces of M /e are thus obtained by deleting a and a−1 from the faces of M . Since
no face is reduced to the singleton a or a−1, as e would be a loop edge otherwise, it
follows that |F (M /e )|= |F (M )|. Since |A′|= |A| −2, we conclude that

χ(M /e ) = (|V (M )| −1)− (|E (M )| −1) + |F (M )|=χ(M )
G (M /e ) is moreover connected: Any path in G (M ) between two vertices can be trans-
formed into a path in G (M /e ) between the same vertices, possibly identified, by just
removing the occurrences of a and a−1 in this path. It follows that M /e is indeed
connected.

2.1.3 Edge deletion

Definition 2.7. Let M = (A,ρ, ι) be a map with at least two edges. If e = {a , a−1} is an
edge of M without an endpoint of degree one or a free end, the deletion of e in M
transforms M to a map M − e = (A \ e ,ρ′, ι′)where ι′ is the restriction of ι to A \ e and
ρ′ is obtained by deleting a and a−1 in the cycles of ρ, i.e.,

∀b ∈ A \ e , ρ′(b ) =







ρ(b ) if ρ(b ) 6∈ e ,
ρ2(b ) if ρ(b ) ∈ e and ρ2(b ) 6∈ e ,
ρ3(b ) otherwise.

(2)
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Figure 7 shows the deletion of a loop edge. Observe that G (M − e ) = G (M )− e .

b

a−1

ρ
a

c
b ρ′

c

b

a−1

ρ
a

c

b
ρ′

c

Figure 7: The deletion of a loop edge e = {a , a−1}. Arc b is such thatρ(b ) ∈ e . Above, We
have ρ2(b ) 6∈ e implying ρ′(b ) =ρ2(b ) = c . Below, ρ2(b ) ∈ e so that ρ′(b ) =ρ3(b ) = c .

An edge that is incident to two distinct faces is said regular and singular otherwise.
Hence, an edge is regular if and only if F (a ) 6= F (a−1).

Lemma 2.8. If M is a connected map with at least two edges and e = {a , a−1} is an edge
of M with no endpoint of degree one and no free end, then

χ(M − e ) =

�

χ(M ) if e is regular,
χ(M ) +2 otherwise.

Note that the deletion of e may disconnect the map.

PROOF. Clearly, M ′ has the same number of vertices as M and one edge less. Let
ϕ =ρ ◦ ι and ϕ′ =ρ′ ◦ ι′ be the facial permutations of M and M ′ respectively. We have
that e = {a , a−1} is regular if and only if the ϕ-cycles of a and a−1 are distinct. Using
the definition ofρ′ in (2), we see that the cycles ofϕ′ are the same as those ofϕ except
for 〈ϕ〉a and 〈ϕ〉a−1. If these cycles are distinct, then they are merged to a single cycle
of ϕ′. Otherwise, 〈ϕ〉a = 〈ϕ〉a−1 is split to give two distinct cycles of ϕ′. We infer that
M ′ has one face less in the former case and one more in the latter. We conclude that

χ(M − e ) = |V (M )| − (|E (M )| −1) + (|F (M )| −1) =χ(M )

if e is regular and

χ(M − e ) = |V (M )| − (|E (M )| −1) + (|F (M )|+1) =χ(M ) +2

otherwise.
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b

a−1

ρ
a
c b ρ′ c

c −1

c −1d d

Figure 8: The deletion of the loop edge {a , a−1} replaces the facial circuit
(. . . , b −1, a , c −1, a−1, c , d , . . . ) by the two circuits (. . . , b −1, c , d , . . . ) and (c −1) .

Figure 8 shows the effect of deleting a singular loop edge.
We leave as an exercise, the following link between edge contraction and deletion.

Lemma 2.9. Let e be an edge of a connected map M with at least two edges. Then,
under the condition that the following contractions or deletions are well-defined, we
have (M /e )∗ =M ∗− e and (M − e )∗ =M ∗/e .

2.1.4 Edge and face subdivisions

Definition 2.10. Let e = {a , a−1} be an edge of a map M = (A,ρ, ι). The subdivision
of e in M transforms M to a map Se M = (A′,ρ′, ι′)where

• A′ = A ∪{b , b ′}, where b , b ′ are new arcs not in A,

• the restriction of ι′ to A is equal to ι and ι′(b ) = b ′,

• ρ′ is defined by

∀c ∈ A′, ρ′(c ) =



















ρ(a ) if c = b
a if c = b ′

b ′ if c = a
b if ρ(c ) = a
ρ(c ) otherwise.

See Figure 9 for an illustration. We observe that G (Se M ) = Se G (M ) (see the corre-
sponding definition in the previous lecture).

Definition 2.11. Let M = (A,ρ, ι) be a map and let a , b be two arcs, possibly equal,
belonging to a same face F (a ) = F (b ). The subdivision of F (a ) from a to b transforms
M to a map S(a ,b )M = (A∪{c , c −1},ρ′, ι) obtained by adding a new edge {c , c −1} in F (a )
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a
ρ

ι
a−1

b
ρ′

b ′

a
a−1

ι′

Figure 9: The subdivision of an edge splits that edge, introducing a new vertex on the
edge.

between the heads of a and b (see Figure 10). When a 6= b the new rotation system ρ′

is given by

∀d ∈ A ∪{c , c −1}, ρ′(d ) =



















c if d = a−1

c −1 if d = b −1

ρ(a−1) if d = c
ρ(b −1) if d = c −1

ρ(d ) otherwise.

When a = b , ρ′ is given by

∀d ∈ A ∪{c , c −1}, ρ′(d ) =











c if d = a−1

c −1 if d = c
ρ(a−1) if d = c −1

ρ(d ) otherwise.

We trivially check that

Lemma 2.12. The edge and face subdivisions preserve the number of connected com-
ponents and the Euler characteristic.

Remark 2.13. The inverse of an edge subdivision amounts to contract the newly in-
troduced edge, while the inverse of a face subdivision amounts to delete the newly
introduced regular edge. Hence, face subdivision and regular edge deletion are inverse
to each other. Note that the edge introduced by an edge subdivision must have a degree
two endpoint. However, Zieschang et al. [ZVC80, p. 67] observe that the contraction of
any non-loop edge can be obtained from a sequence of edge or face subdivisions and
their inverses. Figure 11 illustrates the process of contracting an edge in this way.

Exercise 2.14. The sequence of operations in Figure 11 is still valid when the right
endpoint on the figure has degree one, i.e., when the edge is a pendant edge. Propose
a simpler sequence of face or edge contractions (and their inverses) equivalent to an
edge contraction in that case.

2.2 Classification of oriented maps

Compared to topological surfaces, combinatorial maps have the advantage of being
of a discrete nature. Combinatorial maps are easier to manipulate, to encode and
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b

ρ

a

c −1

b

ρ′

a c

ρ

a = b
c −1

ρ′

a

c

Figure 10: The subdivision of F (a ) between the heads of a and b . Up, the case a 6= b .
Down, the case a = b .

naturally lead to computations. On the other hand, the topological surface encoded
by a map is less apparent and non-isomorphic maps may encode the same topological
surface. In other words, the realization functorM → Top from maps to topological
surfaces is many to one and is not an equivalence. Map morphisms are too rigid to
allow for a full recording of topology. The usual way to circumvent this rigidity is to
introduce a combinatorial equivalence.

Definition 2.15. Combinatorial equivalence of (isomorphisms classes of) maps is
the equivalence relation generated by edge and face subdivisions as specified in Sec-
tion 2.1.

Following Remark 2.13, two maps are combinatorially equivalent if and only if the
first map can be obtained from the other one by a finite sequence of the operations
described in Section 2: contraction of non-loop edge, regular edge deletion, edge
subdivision or face subdivision. By Lemma 2.12, equivalent maps share the same con-
nectedness and Euler characteristic. We shall often say that two maps are equivalent
when they are combinatorially equivalent.

The normal form of a sphere is the map with a unique loop edge:

({a , a−1}, (a , a−1), (a , a−1))

The normal form of a connected sum of g tori, g > 0, is the map with 2g edges
a1, b1, a2, b2, . . . , ag , bg whose rotation system has a unique cycle

ρg = (a1, b −1
1 , a−1

1 , b1, . . . , ag , b −1
g , a−1

g , bg ) (3)
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Figure 11: Let us denote by Se or Sf respectively, a generic edge or face subdivision and
by S−1

e and S−1
f the corresponding inverse operations. The contraction of the upper

left edge is the result of the sequence of operations: Se ,Sf ,S−1
f ,S−1

e ,Se ,Sf ,S−1
f ,S−1

e .

Definition 2.16. A sphere or a connected sum of tori is a map combinatorially equiva-
lent to its corresponding normal form.

We shall prove that every finite map is equivalent to exactly one of the above sphere
or tori normal forms.

Lemma 2.17. Every finite connected oriented map is equivalent to a map with a single
vertex.

PROOF. Let M be a finite connected map and let T be a spanning tree of its graph
G (M ). If M has at least one edge not in T , we may contract the edges of T one after
the other, in any order. We obtain this way an equivalent map with a single vertex.
If G (M ) is a tree, we may contract all of its edges but one and note that an oriented
map with a single non-loop edge is combinatorially equivalent to a normal sphere.
To see this, subdivide the unique face of the map by connecting the endpoints of the
non-loop edge and contract that edge.

A map with a single vertex and either a single face or a single edge is said reduced.

Lemma 2.18. Every finite connected oriented map is equivalent to a reduced map.

PROOF. Let M be a finite connected oriented map. By the previous lemma we may
assume that M has a single vertex. Note that every face of M corresponds to a vertex
of its dual graph G (M ∗)which is connected by Proposition 2.2. As long as M has more
than one face, the connectivity of the dual graph implies the existence of an edge e
incident to two distinct faces of M . If M , hence M ∗, has more than one edge we can
delete e , thus reducing the number of faces of M . By induction on the number of
edges, we obtain an equivalent reduced map.
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The classification of maps relies on a repeated use of face subdivisions and edge
deletions. We introduce some concise notations to describe these operations. We
denote by ϕ = ρ ◦ ι the facial permutation of a map (A,ρ, ι). We also view a face
F (a ) = (a ,ϕ(a ),ϕ2(a ), . . . ) as a circuit in G (M ) and write X Y for the concatenation of
two paths rather than X · Y . We shall not distinguish the notation for a circuit or a
path; the distinction should be clear from the context. If F (a ) = F (b ) we thus have
F (a ) = X a Y b for some subpaths X , Y . Following Definition 2.11, the subdivision of
F (a ) = X a Y b from a to b splits the face into two new faces X a c and c −1Y b by the
introduction of an edge {c , c −1} between the heads of a and b . This subdivision is
depicted by the following diagram:

X a Y b
c=(a ,b )
−→ X a c + c −1Y b

Conversely, if an edge e = {c , c −1} is incident to two distinct faces X c and c −1Y , then
the deletion of e is depicted by the diagram

X c + c −1Y
−e−→ X Y

We first state an auxiliary lemma.

Lemma 2.19. Let M = (A,ρ, ι) be a finite reduced oriented map that is not a sphere. For
every arc a ∈ A there exists an arc b 6∈ {a , a−1} such that the unique face F of M has the
form

F = a . . . b . . . a−1 . . . b −1 . . .

where each ellipsis denotes a possibly empty subpath.

PROOF. Let us write F = a X a−1Y , for some possibly empty paths X , Y . Observe
that M being reduced and not a sphere, F is the unique cycle of ρ.

Assume for a contradiction that for every arc b occurring in X , its opposite arc
b −1 also occurs in X . Let U be the set of arcs comprising a−1 and the arcs in X . Note
that a 6∈U . Now, ρ =ϕ ◦ ι leaves U globally invariant, in contradiction with the above
observation.

Theorem 2.20. Every finite connected oriented map is either a sphere or a connected
sum of tori.

PROOF. Let M be a finite connected oriented map. We need to prove that M is
equivalent to the normal form of a sphere or of a connected sum of tori. By Lemma 2.18,
we may assume that M is reduced. If M has a single edge, we trivially check that M is
equivalent to the normal form of a sphere. We can thus further assume that M has a
single face F and at least two edges. According to Lemma 2.19, we may write

F = a X b Y a−1Z b −1W Tk

where each of X , Y , Z and W is a possibly empty path and where

Tk = a1b1a−1
1 b −1

1 a2b2a−1
2 b −1

2 . . . ak bk a−1
k b −1

k
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a

X
b

Y

b −1

c

Y

a−1

c
c −1

Z

W Tk b −1 Z

a

X
W Tk

a−1c −1

b

c

Y

Z
a

X
W Tk

a−1c −1

d

d −1

d −1

Z

W Tk

c
c −1

a−1

a

X

d

Y

Figure 12: Upper left, A schematic view of the unique face of M . The map M is applied
a face subdivision by inserting a (red plain) edge. Upper right, An equivalent view of
the resulting two faces. The deletion of the dashed (blue) edge merges the two faces
in a different way. We further apply a face subdivision (lower right figure) and an edge
deletion (lower left figure) to obtain an equivalent reduced map.

for some k ≥ 0 (by convention T0 is the empty path) and some pairwise distinct edges
{ai , a−1

i },{bi , b −1
i }. We apply the following sequence of operations as illustrated on

Figure 12.

F = Z b −1W Tk a X b Y a−1 c=(ϕ−1(a ),a−1)
−→ Z b −1W Tk c + c −1a X b Y a−1

W Tk c Z b −1+ b Y a−1c −1a X
−{b ,b−1}
−→ W Tk c Z Y a−1c −1a X

c Z Y a−1c −1a X W Tk
d=(c ,a−1)
−→ c −1a X W Tk c d +d −1Z Y a−1

X W Tk c d c −1a +a−1d −1Z Y
−{a ,a−1}−→ X W Tk c d c −1d −1Z Y

We obtain this way a reduced equivalent map M ′ whose unique face has facial circuit
Z Y X W Tk+1 with ak+1 = c and bk+1 = d . Note that this face has the same length as F .
Since |Tk+1|> |Tk |, it follows by induction on k that M must be equivalent to a reduced
map Mg whose unique face has the form Tg for g = |A|/4. We conclude that up to a
renaming of the arcs the rotation system of Mg is ρg as in (3).
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3 Path homotopy in Oriented Maps

A path, loop or circuit of a map M is a path, loop or circuit of its graph G (M ) (See the
lecture notes on graphs). The notion of path deformation via elementary homotopies
should now take into account that a path can be deformed inside a face since a face
should represent a topological disc. This leads to the following definitions.

Let f be a face of a map M = (A,ρ, ι). Recall from Definition 1.1 that a face is cycle
of the the permutation ρ ◦ ι. In order to formally differentiate between a face and its
boundary circuit, we denote by ∂ f the cycle f viewed as a circuit in G (M ). We call ∂ f
the facial circuit of f . If ∂ f = u · v −1, where u is a possibly constant subpath of ∂ f ,
then u and v are said complementary subpaths.

Definition 3.1. Let M be a map. An elementary homotopy in a path γ of M consists
either in adding or removing a spur in γ, or in replacing a subpath of γ that is also a
subpath of a facial circuit by its complementary subpath. In other words, if γ=λ ·u ·µ
and ∂ f = u · v −1 then γ is transformed into λ · v ·µ by elementary homotopy. A free
elementary homotopy is an elementary homotopy applied to any of the path repre-
sentatives of a circuit. The homotopy relation is the transitive closure of elementary
homotopies. Likewise, free homotopy is the transitive closure of free elementary ho-

motopies. We write γ ∼ λ if γ and λ are homotopic paths and γ
free∼ λ when they are

freely homotopic circuits. A loop or circuit (freely) homotopic to a constant path is
said contractible. If the last vertex of a path γ coincides with the first vertex of a path
λ, their concatenation is the path γ ·λwhose arc sequence is the the arc sequences of
γ followed by the arc sequence of λ.

Remark 3.2. The homotopy relation is actually generated by the second type of ho-
motopies only, replacing a piece of facial walk by a complementary subpath. Indeed,
the addition of a spur u · v ∼ u ·a ·a−1 · v can be obtained via elementary homotopies
of the above type: if ∂ f = a ·w , then u · v ∼ u · a ·w · v ∼ u · a · a−1 · v . Here, the
first elementary homotopy replaces the constant path (o (a )) by a ·w and the second
elementary homotopy replaces w by the complementary subpath a−1.

3.0.1 Homotopy versus free homotopy

Lemma 3.3. Two loops α and β with a common basepoint on a map M are freely
homotopic if and only if there exists a loop ` such that α and ` ·β · `−1 are homotopic.

PROOF. Let n be the number of free elementary homotopies separating α from β .

We thus have for some loops αi , i = 1, n −1, that α= α0
free→ α1

free→ . . .
free→ αn = β where

each arrow is a free elementary homotopy. We claim that there exist paths λ1, . . . ,λn

such that α0∼λ1α1λ
−1
1 ∼ . . .∼λnαnλ

−1
n . Indeed, setting λ0 to the constant path, we can

recursively define λi as follows. Since αi
free→ αi+1 we have an elementary homotopy

α′i →α
′
i+1 for some cyclic permutations of αi and αi+1 respectively. If p is the subpath

of αi from its basepoint to the basepoint of α′i , we have αi ∼ p ·α′i · p
−1. Similarly,
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v

αi+1

v
αi

λi

f

vi

vi+1

w

p

q
λi+1

Figure 13: Left, v is the common basepoint of α and β while vi and vi+1 are the
basepoints of αi and αi+1 respectively, and w is the common basepoint of α′i and α′i+1.
The elementary homotopy α′i →α

′
i+1 is supposed to use complementary subpaths of

∂ f . Right, The loop λi+1αi+1λ
−1
i+1.

αi+1 ∼ q ·α′i+1 · q
−1 for some subpath q of α′i+1. Assuming α0 ∼ λiαiλ

−1
i we can thus

write
α0 ∼λi ·p ·α′i ·p

−1 ·λ−1
i ∼λi ·p ·α′i+1 ·p

−1 ·λ−1
i ∼λi+1αi+1λ

−1
i+1

with λi+1 = λi .p ·q−1. See Figure 13. Choosing `= λn we may conclude the lemma.

Corollary 3.4. Let α and β be two circuits and let v be a vertex of a map M . The
circuits α and β are freely homotopic if and only if for any paths p and q from v to the
basepoints of α and β respectively, there exists a loop ` such that the loops p ·α ·p−1 and
` ·q ·β ·q−1 · `−1 are homotopic.

Corollary 3.5. Let α and β be two paths on a map M . We have the equivalences

α∼β ⇔ α ·β−1∼1 ⇔ α ·β−1 free∼ 1

PROOF. We have α ∼ β =⇒ α · β−1 ∼ β · β−1 ∼ 1. Conversely, α · β−1 ∼ 1 =⇒
α ·β−1 ·β ∼β . This takes care of the first equivalence. The second equivalence follows

from Lemma 3.3, as α ·β−1 free∼ 1⇔α ·β−1 ∼ ` · `−1 ∼ 1 for some (thus any) loop `.

3.1 The fundamental group of maps

Let v be a vertex of a map M . It is easily checked that the path concatenation λ ·µ is
homotopic to the path concatenation λ′ ·µ′ whenever λ∼λ′ andµ∼µ′. Hence, the set
of homotopy classes of loops with basepoint v is a group for the law of path concate-
nation with (the class of) the constant path (v ) as unit. It is called the fundamental
group of M based at v and denoted by π1(M , v ). According to Corollary 3.4, the free
homotopy classes correspond to the conjugacy classes in this group.

Lemma 3.6. Let T be a spanning tree (of the graph G (M )) of a connected map M . Then
π1(M , v ) is isomorphic to the group with combinatorial presentation

Π= 〈E (M ) | E (T ),{∂ F }F ∈F (M )〉
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If we denote by C the set of chords of T in G (M ) and by rF the sequence of arcs not in T
in the facial circuit of a face F , this group is also isomorphic to

〈C | {rF }F ∈F (M )〉

PROOF. Recall from the graph lecture notes the notations T [v, w ] for the simple v w -
path in T and T [v, a ] for the loop with basepoint v obtained by joining the endpoints
of the arc a to v by simple paths in T . With a little abuse of notation we shall use T [v, a ]
for the loop or for its homotopy class. Ifσ= (a1, a2, . . . , ak ) is a sequence of arcs, we write
T [v,σ] for the concatenation T [v, a1] ·T [v, a2] · · ·T [v, ak ]. When σ is the sequence
of arcs of a loop with basepoint w , we remark that the loop T [v,σ] is homotopic in
G (M ) (by removing spurs) to the loop T [v, w ] ·σ ·T [w , v ]. We assume that each edge
has a default orientation so that it can be identified with an arc. We consider the map
π : E (M )→ π1(M , v ), a 7→ T [v, a ]. If a ∈ E (T ) we know that T [v, a ] is contractible.
Let F be a face of M . By the preceding remark T [v,∂ F ] ∼ T [v, w ] · ∂ F · T [w , v ],
where ∂ F is a path representative with basepoint w of the corresponding circuit.
Using an elementary homotopy to replace ∂ F by the empty path in this loop, we
get T [v,∂ F ] ∼ T [v, w ] · T [w , v ] ∼ 1. The relations E (T ) ∪ {∂ F }F ∈F (M ) in the above
presentation of Π are thus satisfied in π1(M , v ). It follows that the map π extends to
a group morphism π :Π→π1(M , v ). By the above remark any loop `with basepoint
v is homotopic to T [v,`], implying that π is onto. It remains to prove that π is one-
to-one. For two wordsω,σ in the free group 〈E (M ) | −〉 we writeω=Π σ ifω and σ
are equal as elements in Π. Let σ ∈ 〈E (M ) | −〉 such that π(σ) is contractible. Since

π(σ) free∼ T [v,σ], it ensues from Corollary 3.5 that T [v,σ] can be reduced to the constant
path by elementary homotopies. Considering T [v,σ] as a word in 〈E (M ) | −〉, we thus
have T [v,σ] =Π 1. On the other hand, since the edges of T are relations in Π, we have
T [v,σ] =Π σ, whenceσ=Π 1. The second part of the lemma is immediate by applying
Tietze transformations to remove the generators in E (T ) from the presentation of Π.

Example 3.7. Since the normal form of a connected sum of g tori (see (3)) has a single
vertex and a single face we easily deduce that its fundamental group has presentation

〈a1, b1, . . . , ag , bg | [a1, b1] · · · [ag , bg ]〉

where [a , b ] = a b a−1b −1.

The homotopy functor From Definition 1.6, it is seen that the arc function of a
map morphism f : M → N extends to a map from the loops of M to the loops of
N . Moreover, the property that f sends faces of M onto faces of N implies that
homotopic loops are sent to homotopic loops. Indeed, if two loops `,`′ are related by
an elementary homotopy that replaces a subpath of ` by its complementary subpath
in a face of M with ramification index e , then f (`) is related to f (`′) by a sequence of
e elementary homotopies. It ensues that f induces a group morphism

f∗ :π1(M , v )→π1(N , f (v ))

The following lemma is immediate.
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Lemma 3.8. The association of a map morphism to its induced group morphism is
functorial. In other words, the induced group morphism of a composition of map
morphisms is the composition of the induced group morphisms.

Example 3.9. Since the elementary homotopies in the graph G (M ) of a map M are
homotopies in the map M , we have an epimorphism  :π1(G (M ), v )�π1(M , v ). More
generally, a graph morphism f : H →G (M ) induces a morphism  ◦ f∗ : π1(H , w )→
π1(M , f (w )).

3.1.1 The induced morphisms of basic operations

Although the basic operations in Sections 2.1.2, 2.1.3 and 2.1.4 are not morphisms
(they could however be interpreted as such in a more relaxed definition of morphisms),
we can define an induced morphism for each basic operation.

• Let e be a non-loop edge of a map M with basepoint v . The contraction of e
yields a map M /e with an evident mapping Ce from the vertices of M to the
vertices of M /e . This mapping extends to loops as follows. If ` is a loop of M with
basepoint v , we define Ce (`) as the loop of M /e with basepoint Ce (v ) obtained
by removing the occurrences of e in `. Since the edge contraction sends faces to
faces, two loops related by an elementary homotopy are sent by Ce to homotopic
loops. As Ce trivially commutes with path concatenation, we conclude that Ce

induces a morphism (Ce )∗ :π1(M , v )→π1(M /e , Ce (v )).

• The subdivision of any edge e of M yields a map Se M . Every loop ` of M maps to
a loop Se (`) of Se M obtained by replacing each occurrence of e with the sequence
of two edges resulting from its subdivision. Similarly to the edge contraction,
the mapping Se induces a morphism (Se )∗ :π1(M , v )→π1(Se M , v ).

• The subdivision of a face in M from an arc a to an arc b induces an inclusion
S(a ,b ) of the loops of M into the set of loops of S(a ,b )M . In turn, S(a ,b ) induces a
morphism (S(a ,b ))∗ :π1(M , v )→π1(S(a ,b )M , v ).

We note that the morphisms (Ce )∗, (Se )∗ and (S(a ,b ))∗ are obtained from the mappings
Ce ,Se and S(a ,b ) as quotients by the homotopy relation. It follows that the induced
morphism of a composition of such mappings is the composition of the induced
morphism. For an appropriate notion of morphisms of map, this just means that the
association f 7→ f∗ is functorial.

Lemma 3.10. The above group morphisms (Ce )∗, (Se )∗ and (S(a ,b ))∗ are isomorphisms.

PROOF. The subdivision of an edge e of M replaces this edge by two edges e1, e2.
Using the above notations and identifying e1 with e , we get that Se inserts occurrences
of e2 in a loop while Ce2

removes such occurrences. It follows that Ce2
◦Se is the identity

on loops, whence (Ce2
)∗ ◦ (Se )∗ = I d . On the other hand, for each loop ` of Se M the

loop Se ◦Ce2
(`) is obtained from ` by possible insertions of the spur (e −1

2 , e2). It follows
that (Se )∗ ◦ (Ce2

)∗ = I d , implying that (Se )∗ is an isomorphism.
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Let e be the edge added by the face subdivision S(a ,b ). To every loop ` of S(a ,b )M
we associate the loop De (`) obtained by substituting each occurrence of e with the
complementary subpath in one of the two incident faces. In particular the mapping
De ◦S(a ,b ) does not modify any loop of M while S(a ,b ) ◦De (`) is homotopic to `. The
mapping De induces a group morphism (De )∗ and we conclude that (S(a ,b ))∗ and (De )∗
are inverse to each other.

The proof that (Ce )∗ is an isomorphism can be done analogously by providing an
adequate mapping from the set of loops of Ce M to the set of loops of M . A less direct
proof follows from Remark 2.13.

As combinatorial equivalence is generated by edge and face subdivisions we conclude
that

Corollary 3.11. Combinatorially equivalent maps have isomorphic fundamental groups.

The fundamental groups of maps are thus given by the presentations in Exam-
ple 3.7.

4 Coverings

Definition 4.1. A morphism p : M →N is a covering if its restrictions to stars Star(x )→
Star(p (x )), for x a vertex or a face of M , are bijective.

Most of the properties proved for graph coverings in the previous lecture notes
remain valid for map coverings. The definition of a path lift for graphs applies verbatim
to maps: a lift of a path γ in N is a path δ in M such that p (δ) = γ. The unique lift
property also remains true for maps. We also have

Lemma 4.2. Let M →N be a covering. Let α̃ and β̃ be respective lifts with a same origin
in M of two homotopic paths α,β in N . Then α̃ and β̃ are homotopic in N .

PROOF. If α and β are related by one elementary homotopy, then so are α̃ and
β̃ . This is obvious for the insertion or deletion of a spur. Otherwise, thanks to the
bijections induced by the covering restrictions to faces (identified with their stars), the
replacement in α of a subpath of the facial circuit of a face F by its complementary
subpath lifts to the replacement in α̃ of complementary subpaths in a face above
F . The lemma now follows by induction on the number of elementary homotopies
relating α to β .

We thus have a right action of π1(N , v ) on the fiber above v ∈V (N ) given by the final
endpoint w .[α] of the lift with origin w of a loop α, where p (w ) = v . Similarly to graph
coverings we get
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Corollary 4.3. If p : (M , w ) → (N , v ) is a covering, then the induced morphism p∗ :
π1(M , w )→π1(N , p (w )) is one-to-one.

The fundamental group of (M , w ) thus embeds as a subgroup of the fundamental
group of (N , v ). We also have that every subgroup of π1(N , v ) can be realized as the
fundamental group of a covering.

Proposition 4.4. Let v be a vertex of the connected map M . For every subgroup U <
π1(M , v ) there exists a connected covering pU : (MU , w )→ (M , v )with pU ∗π1(MU , w ) =
U .

PROOF. Fix a spanning tree T of M = (A,ρ, ι). We write γa for the loop T [v, a ] (see
the notations in the proof of Lemma 3.6). Define MU = (AU ,ρU , ιU ) by

• AU = A×{U g }g∈π1(M ,v ),

• ρU (a ,U g ) = (ρ(a ),U g ), and

• ιU (a ,U g ) = (ι(a ),U g [γa ])

where U g denotes the right coset representative in π1(M , v ) of g with respect to U .
MU is indeed a map: we trivially check that ιU is a fixed point free involution and
that ρU is a permutation of AU . We consider the projection on the first component
pU : AU → A. The following relations are immediate from the above definitions

ι ◦pU = pU ◦ ιU , ρ ◦pU = pU ◦ρU

Hence, pU : MU →M is a map morphism in the sense of 1.6. We claim that pU is a
covering. Since 〈ρU 〉(a ,U g ) = 〈ρ〉a ×{U g }, the restrictions of pU to vertex stars are
indeed bijective. We also need to prove that the restrictions of pU to facial circuits
are bijective. Let ϕ =ρ ◦ ι and ϕU =ρU ◦ ιU be the facial permutations of M and MU

respectively. We have

ϕU (a ,U g ) =ρU (ι(a ),U g [γa ]) = (ρ(ι(a )),U g [γa ]) = (ϕ(a ),U g [γa ])

Hence, if (a1, . . . , ak ) is the facial circuit of a face of M , then for 0≤ i ≤ k we get
ϕi

U (a1,U g ) = (ai+1,U g [γa1
] . . . [γai

]). In particular,ϕk
U (a1,U g ) = (a1,U g ) sinceγa1

· · ·γak

is freely homotopic to (a1, . . . , ak ), which is contractible. It follows that the restriction
pU : F (a1,U g )→ F (a1) is indeed bijective.

It remains to prove that MU is connected and that pU ∗π1(MU , w ) =U for w = (v,U ).
The proof is formally identical to the proof of the analogous proposition for graphs.

Example 4.5. When U = {1} is the trivial group, pU is the universal cover of M . Up to
isomorphism, this is the unique simply connected covering of M .

Example 4.6. When U = [π1(M , v ),π1(M , v )] is the derived subgroup of π1(M , v ), pU

is the homology covering. Choosing for U the subgroup of π1(M , v ) generated by the
squares, we get the Z/2Z-homology covering.
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The notion of morphism between graph coverings extends to map coverings.
Hence, a morphism between map coverings p : M → N and q : K → N is a map
morphism f : M → K such that p = q ◦ f . The results in Section 7.1.1 Covering
morphisms of the lecture notes on graphs apply verbatim to maps. In particular,

Theorem 4.7. The isomorphism classes of connected coverings of a connected map M
are in 1-1 correspondence with the conjugacy classes of subgroups of its fundamental
group.

5 Quotient Maps

We denote by Aut(M ) the group of automorphisms of a map M .

Definition 5.1. Let Γ < Aut(M ) acts on a map M = (A,ρ, ι). We define the quotient
map M /Γ = (AΓ ,ρΓ , ιΓ ) by

• AΓ = {Γ ·a }a∈A,

• ρΓ (Γ ·a ) = Γ ·ρ(a ) and ιΓ (Γ ·a ) = (Γ ·a )−1 = Γ ·a−1

It readily follows from the definition that the quotient map pΓ : M →M /Γ sending an
arc to its orbit is a map morphism.

Remark 5.2. As for graphs, a subgroup Γ <Aut(M ) is said to act without arc inversion
if for any arc a of M , a−1 is not in the Γ -orbit of a . If M has no self-opposite arc, then
M /Γ has no self-opposite arc if and only if Γ acts without arc inversion.

Remark 5.3. Aut(M ) acts freely on A. Indeed if f ∈ Aut(M ), then f (a ) = a for some
arc a ∈ A implies f (ρ(a )) = ρ(a ) and f (ι(a )) = ι(a ), so that f is the identity by the
transitive action of the monodromy group of M .

Definition 5.4. An automorphism f ∈Aut(M ), with M = (A,ρ, ι) is fixed point free if
f does not fix any vertex or face of M . Equivalently,

∀a ∈ A : f (a ) 6∈ 〈ρ〉a ∪〈ρ ◦ ι〉a (4)

A subgroup Γ <Aut(M ) acts freely on M if every f ∈ Γ \ {I d } is fixed point free.

Proposition 5.5. Let Γ < Aut(M ). The quotient map pΓ : M →M /Γ is a covering if and
only if Γ acts freely on M .

PROOF. Since pΓ is onto, it is a covering if and only if its restriction to (vertex and
face) stars is one-to-one. Using that Γ commutes with ρ and ι, this can be rephrased
as

∀a ∈ A,∀b ∈ 〈ρ〉a ∪〈ρ ◦ ι〉a , Γ .b = Γ .a =⇒ a = b

By Remark 5.3, this is just saying that (4) holds for every f ∈ Γ \ {I d }.
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All the results, proofs and definitions from Section 7 in the previous lecture on
graphs remain valid for maps without self-opposite loops if we add the condition that
a group acting on a map should not invert arcs. If we allow maps to have self-opposite
loops, we can simply drop this condition everywhere in that section. In particular,
the set Aut(p ) of automorphisms of a covering p : M →N is by definition the set of
automorphisms f of M such that p ◦ f = p . We also have,

Proposition 5.6. Let p : M → N be a connected covering and let v be a vertex of M .
Then,

Aut(p )'N
�

p∗π1(M , v )
�

/p∗π1(M , v )

where N
�

p∗π1(M , v )
�

is the normalizer of p∗π1(M , v ) in π1(N , p (v )).

5.1 Hurwitz’s automorphisms theorem

The famous Hurwitz’s bound on the number of automorphisms of a Riemann surface,
applies to combinatorial maps.

Theorem 5.7 (Hurwitz, 1893). Let M be a finite map of genus g ≥ 2, then |Aut(M )| ≤
84(g −1)

PROOF. Put Γ =Aut(M ) and consider the morphism pΓ : M →M /Γ . We first observe
that, by the very definition of a quotient, Γ acts transitively on each fiber of pΓ . This is
equally true for a fiber above a vertex or a face. It follows that all vertices or faces in a
fiber are stars of the same size, hence have the same ramification index. We denote
by ew the ramification index of the fiber above w . The Riemann-Hurwitz formula in
Theorem 1.12 thus factors as

χ(M ) = deg(pΓ )χ(M /Γ )−
∑

w∈V (M /Γ )∪F (M /Γ )

|p−1
Γ (w )|(ew −1)

= deg(pΓ )χ(M /Γ )−
∑

w∈V (M /Γ )∪F (M /Γ )

|p−1(w )|ew (1−
1

ew
)

= |Γ |

�

χ(M /Γ )−
∑

w∈V (M /Γ )∪F (M /Γ )

(1−
1

ew
)

�

where, we have used the index formula of Proposition 1.11 for the last equality and the
fact that Γ acts freely on A(M ) (See Remark 5.3). Since χ(M ) = 2−2g , we may rewrite
this last equation as

2(g −1) = |Γ |Q

where Q =
∑

w∈V (M /Γ )∪F (M /Γ )(1−
1

ew
)−χ(M /Γ ). It follows that Q must be positive. We

claim that Q ≥ 1/42, which proves the theorem. Recall that the characteristic of a
(closed) oriented map is an even integer.

• If χ(M /Γ )≤−2, then Q ≥ 2, confirming the claim.
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• If χ(M /Γ ) = 0, then Q > 0 implies that one of the term in the sum
∑

w (1−
1

ew
)

is positive, i.e. ew ≥ 2 for some w ∈ V (M /Γ )∪ F (M /Γ ). Is follows that Q ≥ 1/2,
which again confirms the claim.

• It remains the case χ(M /Γ ) = 2, when M /Γ is a sphere. Put W = {w ∈V (M /Γ )∪
F (M /Γ ) | ew > 1}. We must have

∑

w∈W (1−
1

ew
)> 2. In particular, |W | ≥ 3. Note

that each term in this sum satisfies 1/2 ≤ 1 − 1/ew ≤ 1 and is an increasing
function of ew .

– If |W | ≥ 5, then
∑

w∈W (1−
1

ew
)≥ 5/2, whence Q ≥ 1/2.

– If |W |= 4, then
∑

w∈W (1−
1

ew
)≥ 3(1/2) +2/3, whence Q ≥ 1/6.

– If |W |= 3, then the least possible value of
∑

w∈W (1−
1

ew
) is 1/2+2/3+6/7,

whence Q ≥ 1/42.

This proves the claim in all the possible cases.

Maps of genus g whose automorphism group size reaches the Hurwitz’s bound 84(g−1)
are called Hurwitz maps. From the proof of the above theorem, such maps must ramify
over the sphere with three branch values of ramification indices 2,3 and 7, respectively.

6 From Maps to Dessins d’Enfants

Here, we try to give an intuition on the concept of dessins d’enfants discovered by
Grothendieck. The monograph by Girondo and González-Diez [GGD12] is an excellent
introduction to the theory of dessins d’enfants.

6.1 A note on the monodromy group

6.1.1 Branched covering

In surface topology, a branched covering is a continuous map p : S ′ → S between
surfaces S ′ and S such that the restriction p : S ′ \ p−1(Σ)→ S \Σ is a (unbranched)
covering for some discrete subset Σ ⊂ S . The points in the singular set Σ are called
branch values and the degree of the branched covering is the degree of its restriction,
i.e. the number of sheets of the corresponding covering. The points in p−1(Σ) are the
ramification points of p . In the neighbourhood of each ramification point, p should
in addition look like (in some charts around the branching point and its image) the
map z 7→ z k in the complex plane. The integer k > 0 is the ramification index of the
ramification point.

A morphism of oriented maps f : M →N can be realized as a branched covering
of degree deg( f ), preserving the orientation, between the corresponding topological
surfaces S (M ) and S (N ). To construct this realization, one can for instance triangulate
each face of S (M ) by coning its boundary from a center point. The resulting triangles
inherit the orientation of S (M ) and each of them is incident with exactly one arc of
M consistently oriented. One can similarly triangulate S (N ). A triangle incident with
an arc a of M can now be sent homeomorphically to the triangle incident with f (a ).
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This defines a branch covering whose ramification points are vertices and face centers
of M with ramification indices as defined in Lemma 1.8.

When M and N are allowed to have self-opposite arcs, one should refine the above
construction in order to define the branched covering properly. First, if an arc of a
map is self-opposite it corresponds in the graph to an edge folded back on itself; only
one of its endpoints is considered as a vertex. The other endpoint is called a free end.
The simplest map shown on Figure 14 has a single self-opposite arc. It intuitively
corresponds to the Riemann sphere. In order to triangulate a map with self-opposite

 

Figure 14: Left, the trivial map ({a }, I d , I d ) has one edge, one face, one (black) vertex
and one (white) free end. Right, the canonical triangulation of the trivial map has two
triangles.

edges, we first color all the vertices of the map in black and introduce a white vertex
in the middle of every edge that is not self-opposite. We also color in white the free
ends of the self-opposite edges. As in the above construction we further triangulate
each face by coning its boundary from a center point. The number of triangles in a
face is doubled compared to the previous construction. Note that the vertices of every
triangle include one black vertex, one white vertex (corresponding to an edge) and
a face center. Also, the side of a triangle connecting its black and white vertices can
be associated with the arc of the map that contains it, oriented from the black to the
white vertex. Each arc, self-opposite or not, is now associated with two triangles with
opposite orientations with respect to the ordering (black,white,center) of its vertices.
The resulting triangulation is the canonical triangulation of the map. We finally send
homeomorphically a triangle of the canonical triangulation of M associated with an
arc a to the triangle of the canonical triangulation of N associated with f (a ), and with
the same orientation. The resulting branched covering may now ramifies at white
vertices, i.e. at the middle of edges or at free ends, in addition to black vertices and
face centers.

This correspondence between map morphisms and branched coverings can be
performed in the realm of Riemann surfaces [GGD12], providing adequate functors.

6.1.2 The canonical morphism of a map and its monodromy group

In order to complete the parallel between combinatorial maps and Riemann surfaces
we shall define the combinatorial counterpart of a Belyi function, that is of a holomor-
phic map to the Riemann sphere with at most three branch values. However, to be
defined properly this combinatorial counterpart requires to allow a combinatorial
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map to have self-opposite arcs. Hence, an oriented map becomes a triple M = (A,ρ, ι)
where, as before, ρ and ι are permutations of A with ι an involution, but ι may now
fix some arcs. It now appears that for any map M = (A,ρ, ι) there is a canonical
morphism to the trivial map ({a }, I d , I d ) given by the constant function A → {a }.
It corresponds to a branched covering of the sphere that ramifies above its vertex,
the center of its face and its free end. Identifying free ends with their arcs, we see
that the above correspondence between topological and combinatorial maps must
take into account ramifications at edges in addition to vertices and faces [JS78]. The
formalisms of constellations and hypermaps permit us to avoid those singular free
ends. Those formalisms are sketched in the next section for completeness. However,
as far as algorithms on curves on surfaces are concerned the point of view of rotation
systems seems more adequate and more intuitive.

Given a topological covering f : (S , y )→ (B , x ) there is a right action of π1(B , x )
on the fiber f −1(x ) obtained by lifting a loop representative of a homotopy class, in
the same way as for graph coverings in the previous lecture. The representation of
π1(B , x ) as a subgroup of permutations of f −1(x ) is called the monodromy group
of the covering. Changing the basepoint produces an isomorphic action, so that
the monodromy group is well-defined up to isomorphism. When f is a branched
covering, we can still define its monodromy group by considering the restriction
f : S \ f −1(C )→ B \C , where C is the set of branch values (also called critical values) of
f . This restriction is indeed a (unbranched) covering on which acts the fundamental
group of B \C by monodromy.

We can now consider the monodromy group of the branched covering correspond-
ing to the topological realization of the canonical morphism of a combinatorial surface
M . This branched covering has the form S (M )→ S2 whose set C of branch values
contains the two endpoints of (the embedding of) the unique edge of the trivial map
and the center of its unique face. Hence, S2 \C is a sphere with three punctures. It
is homeomorphic to a pair of pants without boundary. Its fundamental group is a
free group of rank 2 generated by two loops λ,µ, each surrounding one of the edge
endpoints (see Figure 15). If we connect the chosen basepoint x to a point p on the

λ µ
x

Figure 15: Two views of a pair of pants with two loops generating its fundamental group.
The loop λ surrounds the vertex of the embedded edge and the loop µ surrounds its
free end.

unique edge, a , of the punctured sphere by a path, then the lifts of this path establish a
correspondence between the fiber of x and the fiber of p . In turn, the points of p ’s fiber
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can be identified with the arcs of M = (A,ρ, ι). Indeed, each lift of a contains a single
lift of p and the fiber of a by the canonical morphism is the whole set A. Because each
lift of λ crosses exactly one arc, the action of λ on a point in the fiber of x , identified
with an arc e of M , corresponds to a rotation of e about its origin. This action thus
corresponds to the rotation system ρ. Similarly, the action of µ corresponds to the
involution ι. The monodromy action of π1(S2 \C , x ) = 〈λ,µ〉 is thus isomorphic to the
monodromy group 〈ρ, ι〉, whence the terminology.

6.2 Other models of oriented maps

We briefly mention some other combinatorial models of oriented surfaces found
in the litterature such as the notion of constellation as presented by Lando and
Zvonkin [LZ04].

6.2.1 Constellations

Definition 6.1. A constellation is a finite sequence of permutations (g1, . . . , gk ) acting
transitively on a finite set {1, . . . , n} and such that the product g1 · · ·gk is the identity
permutation.

This algebraico-combinatorial object can be interpreted as an n-fold branched
covering of the Riemann sphere with k branch values indexed by 1, . . . , k . The ramifi-
cation indices of the ramification points above the branch value of index i are given
by the length of the cycles of the permutation g i . Given a constellation (g1, . . . , gk ) the
construction of this branched covering can be performed as follows. We consider a set
C of k punctures in the oriented sphere S2 and a basepoint x ∈ S2 \C . We draw a star
graph in S2 connecting x to each point in C (see Figure 16). We obtain a generating set

x

y

Figure 16: A sphere with five (blue) punctures. The loop γy with basepoint x surrounds
the puncture y .

for π1(S2 \C , x ) by forming a loop γy for each y ∈C ; this loop follows the edge x y in
the star graph and stops just before reaching y , goes around y in the counterclockwise
direction and travels back to x . The product of the γy in the counterclockwise order of
the star edges is clearly contractible. Denoting by 1, . . . , k the points of C in clockwise
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order, we thus have a presentation 〈[γ1], . . . , [γk ]; [γ1]−1 · · · [γk ]−1 = 1〉 for π1(S2 \C , x ).
Since the unique relation of the [γi ] is satisfied by the g −1

i , the map [γi ] 7→ g −1
i induces

a group morphismφ :π1(S2 \C , x )→G where G = 〈g1, g2, . . . , gk 〉 is the monodromy
group of the constellation. Let U = {g ∈G ;g (1) = 1} be the stabilizer of 1 (recall that
G acts on {1, . . . , n}). Similarly to the case of graphs in the previous lecture notes, the
preimage Uφ :=φ−1(U )<π1(S2 \C , x ) determines a covering pU : SU → S2 \C whose
fiber elements are indexed by the right cosets of Uφ in π1(S2 \C , x ). These right cosets
are put in 1-1 correspondence with {1, . . . , n} thanks to the map

F :π1(S2 \C , x )→{1, . . . , n}, α 7→φ(α−1)(1)

Indeed, F (α) = F (β ) is equivalent to β ∈Uφα and F is onto becauseφ is onto and G
acts transitively on {1, . . . , n}. In turn, F “quotients” to a bijection Fx between the fiber
of pU above x and {1, . . . , n} given by Fx (x ,Uφα) = F (α).

We now check that Fx transforms the action of the monodromy group of pU into
the action of the monodromy group of the constellation. As seen in the previous
lecture notes on graphs, the action of π1(S2 \C , x ) on the fiber above x is given by
(x ,Uφα).[γi ] = (x ,Uφα[γi ]). Using the correspondence Fx , we compute

Fx

�

(x ,Uφα).[γi ]
�

= Fx (x ,Uφα.[γi ]) = F (Uφα.[γi ]) =φ
�

(α[γi ])
−1
�

(1)

=φ[γi ]
−1φ(α−1)(1) = g i (Fx (x ,Uφα)),

which shows the correspondence between the monodromy group actions.
We finally compactify SU and S2 \C to extend pu to a branched covering SU → S2.

To this end, we consider small punctured discs D ∗
y centered at each puncture y ∈C

and note that the restriction pU : p−1
U (D

∗
y ) → D ∗

y being a covering of finite degree,

p−1
U (D

∗
y )must be a disjoint union of punctured discs. We formally add a center to those

punctured discs and extend pU trivially by sending the added centers to y . We obtain
this way a compact branched covering of the sphere S2. We claim that its ramification
indices are the cycle lengths of the g i . To see this, we may further assume that in each
γy , the small loop around y , call it λy , is contained in D ∗

y . Let y ′ be the basepoint of

λy (on the edge x y ). Consider a compactified component D of p−1
U (D

∗
y ). By definition,

the monodromy action of [λy ] on the fiber p−1
U (y

′) restricts to a cyclic permutation
of p−1

U (y
′)∩D whose order is the ramification index of the center of D . Now, it is a

simple exercise to check that the action of [λy ] on p−1
U (y

′) is isomorphic to the action
of [γy ] on p−1

U (x ). In turn, this action is isomorphic to the action of g i on {1, . . . , n} by
the preceding discussion.

We can plug these ramification indices into the Riemann-Hurwitz formula of
theorem 1.12 to obtain the Euler characteristic of SU . This branched covering comes
with a cellular embedding of a graph obtained by lifting the star graph on S2. This
graph is bipartite, the partition being given by the fiber of the basepoint on the one
side and the union of the fibers of the branch values on the other side. It can be seen
as a union of stars of degree k centered at the vertices in the basepoint fiber, whence
the name of constellation.
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6.2.2 Hypermaps

Other cellular embeddings can be obtained starting with a different graph on the
sphere. One possibility is to start with a chain graph going trough the branch values
y1, y2, . . . , yk−1, leaving the point yk aside. In this case, the covering has branch points
at vertices and at the center of faces (the points above yk ). When k = 3, that is when
we start with a 3-constellation (g1, g2, g3), we obtain a single edge on the sphere as for
the trivial map on Figure 14. The partition corresponding to the two fibers of y1 and
y2 again make the lifted graph bipartite. If we further impose that g2 is a fixed point
free involution, then y2 lifts to degree two vertices. Viewing the edges as arcs oriented
from (lifts of) y1 to y2 we get exactly the same picture as for the canonical morphism
of a map, where the lifts of y2 become the middle-point of the edges. Formally we
have an identification of the combinatorial maps as 3-constellations given by the
correspondence (A,ρ, ι) 7→ (ρ, ι, (ρ ◦ ι)−1), where the set A of arcs should be identified
with {1, . . . , n}. We can thus identify the fibers of y1, y2 and y3 as vertices, edges and faces
respectively. If we still keep this terminology for general 3-constellations, where g2 may
be any permutation, then each “edge” in the fiber of y2 becomes incident to possibly
more than two vertices. Traditionally, the vertices above y1 are colored in black and
the vertices above y2 are colored in white. The lifted graph can thus be interpreted as a
hypergraph1 whose ground set is the set of black vertices and whose hyperedges are the
sets of neighbours of the white vertices. This is why 3-constellations are usually called
hypermaps. The cellular embedding of this hypergraph has a canonical triangulation
defined in the same way as in Section 6.1.1 for maps with self-opposite edges: the
vertices of each triangle are respectively black, white, and at the center of a face.

As noted above, any map can be considered as a hypermap. The converse is
also true, so that there is no real loss of generality by considering maps instead of
hypermaps: If one subdivide every black-white edge of a hypermap by introducing a
grey vertex in the middle, we obtain a map where the arcs corresponds to the edges
of the subdivide hypermap and the opposite of a black-grey edge is the incident
grey-white edge.

6.2.3 Intrinsic algebraic formalism

Given a connected combinatorial map (A,ρ, ι), its monodromy group 〈ρ, ι〉 acts transi-
tively on the set A of arcs that can thus be identified with the left cosets of the stabilizer
Sa = {τ ∈ 〈ρ, ι〉 | τ(a ) = a } of some fixed arc a ∈ A. Indeed, it is easily seen that the
correspondence 〈ρ, ι〉/Sa → A given by τSa 7→τ(a ) is well defined and one-to-one. To
obtain an isomorphic action of the monodromy group, one should consider its left
action on the left cosets 〈ρ, ι〉/Sa . A map can thus be represented by a (monodromy)
group Γ , a (stabilizer) subgroup S , and two generators ρ, ι of Γ such that ι2 = 1. How-
ever, to represent a map, one should make sure that Γ acts faithfully on Γ/S . Indeed,
since the monodromy group was originally defined as a subgroup of permutations of
A it acts faithfully, meaning that each element of the monodromy group is uniquely
determined by its action. In general, if we are given (Γ ,S ,ρ, ι) as above there is no
reason why Γ should act faithfully on Γ/S . Note that for h , g ∈ Γ , having h (g S ) = g S

1Note that a hypergraph, or set system, is just another name for a bipartite graph where one part is
chosen as the ground set.
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is equivalent to h ∈ g Sg −1. So, any h in the intersection of the conjugate subgroups
of S acts as the identity on Γ/S . This intersection is the largest normal subgroup of Γ
contained in S and is usually denoted by coreΓ (S ). Hence, coreΓ (S ) should be trivial if
we want Γ to act faithfully. When this is not the case this can be enforced by considering
the action of Γ/coreΓ (S ) on Γ/S with the condition ι2 ∈ coreΓ (S ). See [BS85] and [BW09,
Ch. 10] for further details.

We close this section by noting that constellations should not be compared with
combinatorial maps but rather with map morphisms to maps of genus zero endowed
with fixed embedded graphs (like star graphs). The two formalisms are equivalent
but thanks to its symmetry the formalism of constellations is more powerful when
dealing with algebraic properties. However, the graph embedding we can associate to
a constellation is not really encoded in the constellation as it depends on the graph
drawn on the base sphere. When dealing with combinatorial curves on surfaces, the
embedded graph itself becomes the main object of study and combinatorial maps
provide this graph more directly.

6.3 Dessins d’enfants

The theory of Dessins d’enfants, as named by A. Grothendieck, is the result of beautiful
connections between combinatorial maps, Riemann surfaces and the absolute Galois
group Gal(Q/Q). In particular, Gal(Q/Q) acts faithfully on combinatorial (hyper)maps.
The correspondence between combinatorial maps and Riemann surfaces was devel-
oped at the end of the 1970’s by G. Jones and D. Sigerman [JS78], but the full connection
with the the absolute Galois group was recognized by Grothendieck in his famous
Esquisse d’un programme. We end these notes on the topology of combinatorial
surfaces by a brief and sketchy introduction to these correspondences.

6.3.1 From maps to Belyi functions

As observed in Section 6.1, a map comes with a canonical morphism onto the trivial
map ({a }, I d , I d ). Moreover, this morphism can be realized as a topological branched
covering over the sphere, with three branch values respectively at the vertex, free
end and face center of the trivial map. The ramification index above the free end
can be 2, or 1 when the given map has self-opposite arcs. To avoid this limitation for
the ramification index, one can resort to hypermaps as defined in Section 6.2.2. An
analogous construction indeed holds for hypermaps. To see this, first replace the trivial
map by the trivial hypermap composed of a single black-white edge corresponding
to the 3-constellation (I d , I d , I d ) acting on the singleton {1}. Let •,◦ and ? denote
respectively the black vertex, the white vertex and the face center of the corresponding
(cellular) embedding of the black-white edge into the sphere. The obvious projection
of the canonical triangulation, T , of a hypermap (g1, g2, g3) (see Section 6.2.2) to the
canonical triangulation, T0, of the trivial hypermap provides a topological ramified
covering f : T → T0 with •,◦,? as its three branch values and whose ramification
indices are the lengths of the cycles of the g i ’s. We can actually realise this ramified
covering in the realm of Riemann surfaces. For this, consider the Riemann sphere

http://webusers.imj-prg.fr/~leila.schneps/grothendieckcircle/EsquisseFr.pdf
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bC = C∪ {∞}. Send the two triangles of T0 to bC so that their common boundary is
sent to the circleR∪{∞}with •,◦,?mapped respectively to 0, 1 and∞ and choose
which triangle goes to which component ofC \R in a way that the mapping preserves
orientations. This mapping, call it h , endows the trivial hypermap with a holomorphic
structure: An atlas is provided by the two charts (T0 \{•}, 1/h T0\{•}) and (T0 \{?}, h T0\{?}).
On the other hand, given the canonical triangulation T of a hypermap, the topological
ramified covering f : T → T0 restricts to an unramified covering when removing
the ramification points above •,◦,?. We can lift the above holomorphic structure
on T0 \ {•,◦,?} to a holomorphic structure on T \ f −1(•,◦,?). As in Section 6.2.1, this
structure can be extended to the whole T so that h ◦ f : T → bC now appears as a
morphism of Riemann surfaces. Such a morphism, from a compact Riemann surface to
the Riemann sphere with three branch values at 0, 1 and∞, is called a Belyi function.
The above construction leads to a well defined Belyi function up to equivalence, where
two morphisms are considered equivalent if they are equal up to a composition with a
(holomorphic) automorphism of the source surface (T ). See [GGD12, Sec 4.2]. Note
that by construction the reciprocal image of [0, 1]⊂ bC by the Belyi function h ◦ f is the
graph of the hypermap as discussed in Section 6.2.2.

6.3.2 From Belyi functions to algebraic curves defined overQ

In order to define an action of Gal(Q/Q), one first needs to establish a correspondence
between Riemann surfaces and complex algebraic curves.

From complex algebraic curves to Riemann surfaces. Given an irreducible polyno-
mial F ∈C[X , Y ], we may look at the set {F = 0}. This complex curve can be given a
holomorphic structure thanks to the following theorem [GGD12, th. 1.86].

Theorem 6.2. Let F ∈C[X , Y ] be irreducible with
F (X , Y ) = q0(Y )X m + . . .+qm (Y ) = p0(X )Y n + . . . pn (X ), assuming n , m > 0. Let

SX = {(x , y ) ∈C2 | F (x , y ) = 0,
∂ F

∂ Y
(x , y ) 6= 0, p0(x ) 6= 0}

SY = {(x , y ) ∈C2 | F (x , y ) = 0,
∂ F

∂ X
(x , y ) 6= 0, q0(y ) 6= 0}

1. SX and SY are connected Riemann surfaces on which the coordinates x, y are
holomorphic functions.

2. There exists a unique compact Riemann surface SF containing SX ∪SY and x, y
extend to meromorphic functions.

3. The ramification points of x and y are in SF \SX and SF \SY , respectively.

From Riemann surfaces to complex algebraic curves. Given a compact Riemann
surface S , we consider the associated field of meromorphic functionsM (S ), which
is the field of (holomorphic) morphisms S → bC for the law of function multiplication.
Choose a non-constant function f ∈M (S ). Note that f taking infinitely many values,
for every polynomial p ∈C[X ] the function p ◦ f can not be identically zero. In other
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words, the field extension C ⊂C( f ) is transcendental (here, C is identified with the
field of constant functions).

Proposition 6.3. Let f ∈M (S ) have degree n. Then, the field extension C( f )⊂M (S )
has degree n.

PROOF SKETCH. The idea of the proof is to show that every h ∈M (S ) is the solution
of a polynomial of degree at most n with coefficients inC( f ). For this, let x ∈ bC and
consider the points yi (x ) above x with respect to the ramified covering f : S → bC, i.e.
f (yi (x )) = x . The polynomial Px with roots h (yi (x )), counted with multiplicities, has
degree n and its coefficients are symmetric functions in the h (yi (x )). It can be shown
that those functions are meromorphic onC. Since the meromorphic functions onC
are the rational functions, so are the coefficients of Px . Moreover, choosing x = f (y )
we get that y is one of the yi (x ), so that Pf (y )(h (y )) = 0. This shows that h is algebraic
of degree at most n in C( f ).

By the theorem of the primitive element the algebraic extension C( f ) ⊂ M (S ) has
the formM (S ) = C( f )[h ] = C( f , h ) for some h ∈M (S ). Now, let F ∈ C[X , Y ] be an
irreducible polynomial such that F ( f , h ) = 0. Then,

S
Φ→ SF

p 7→ ( f (p ), h (p ))

is a well defined isomorphism. The proof goes by showing that the restriction of Φ to
(SF )X is a degree one covering and then applying the extension of morphisms.

Corollary 6.4. With the above notations and those of Theorem 6.2,
f 7→ x and h 7→ y defines a C-algebra isomorphism fromM (S ) toM (SF ) =C(x, y).

Belyi’s theorem. A Riemann surface S is defined over a field K if S is isomorphic to
SF for an irreducible polynomial F (X , Y ) =

∑

ai j X i Y j with coefficients ai j in K . The
last step to make Gal(Q/Q) act on hypermaps is to prove that the source surface of a
belyi function is defined overQ.

Theorem 6.5 (Belyi, 1979)). A compact Riemann surface S is defined over Q̄ if and only
ifM (S ) contains a Belyi function, i.e. a morphism S → bCwith at most 3 branch values
at 0, 1 and∞.

Note that the existence of a meromorphic function with less than three branch
values implies that S is isomorphic to bC (study the different induced coverings of the
sphere minus 0, 1 or 2 points).

PROOF SKETCH OF THE DIRECT IMPLICATION OF THE THEOREM. By assumption, S is
isomorphic to SF with F ∈Q[X , Y ] irreducible. Consider the coordinate function x
on SF . We have x ∈M (SF ) by point (2) of Theorem 6.2. Denote by BV (x) the set of
branch values of x. Writing F (X , Y ) = p0(X )Y n +p1(X )Y n−1+ · · ·+pn (X ), we have from
point (3) in Theorem 6.2 that the elements of BV (x) are either roots of p0, or the first
coordinate of a solution to the system {F = 0 and ∂ F

∂ Y = 0}, or the point∞∈ bC. Since
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the coefficients of F are in the algebraically closed fieldQ, these branch values must
be inQ∪{∞}.

First suppose that BV (x)⊂Q∪{∞}. Since PSL(2,C) acts (as Möbius transforma-
tions) transitively on triplets of distinct points in bCwe may assume, composing with
a Möbius transformation with rational coefficients, that BV (x) contains {0,1,∞}. If
BV (x) does not contain any other branch value, then we are done. Otherwise, let λ be
such a value. Composing if necessary with the Möbius transformations z 7→ 1− z or
z 7→ 1/z we may further assume that λ=m/(m +n ) for some positive integers m , n .
Consider the Belyi polynomial (bC→ bC)

Pm ,n (X ) =
(m +n )m+n

m m n n
X m (1−X )n

From Theorem 6.2, Pm ,n ramifies at 0, 1,∞ and λwhile its branch values are Pm ,n (0) =
0, Pm ,n (1) = 0, Pm ,n (∞) =∞ and Pm ,n (λ) = 1. It is not hard to see that

BV (Pm ,n ◦x) = BV (Pm ,n )∪Pm ,n (BV (x)) (5)

It follows that Pm ,n ◦x : SF → bC ramifies over one value less than x. By induction on the
number of branch values, we deduce thatM (SF ) contains a Belyi function.

It remains to deal with the case where BV (x) contains values inQ\Q. We consider
the non-rational values in BV (x) and their minimal polynomial m1(X ): This is the
product of the minimal polynomials of the non-rational values without repetition of
factors. Using the same argument as for (5), we have

BV (m1 ◦x) =m1({m ′
1 = 0})∪{0,∞}

Let m2 be the minimal polynomial of m1({m ′
1 = 0}). We can show that m2 has a degree

strictly less that m1. We then consider m2 ◦m1 ◦ x and continue until all the branch
values are rational. This must happen since deg mi is decreasing. We are thus brought
back to the case BV (x)⊂Q∪{∞}.

6.3.3 The action of Gal(Q/Q) on hypermaps

We are now ready to describe how the absolute Galois group acts on hypermaps. Given
a hypermap M , we saw in Section 6.3.1 how to construct a canonical Belyi function fM :
S (M )→Cwith S (M ) a Riemann surface. By Belyi’s theorem 6.5, S (M ) is isomorphic
to some SF for an irreducible polynomial F (X , Y ) =

∑

ai j X i Y j with coefficients ai j

in Q. This isomorphism transforms fM to a Belyi function (SF → bC) ∈ M (SF ) that
we still denote by fM . By Corollary 6.4, fM is a rational function in x, y. Applying an
isomorphism if necessary, it can be proved that the coefficients of this rational function
are also inQ.

Let σ ∈Gal(Q/Q) be an automorphism ofQ. Applying σ to the coefficients of F
we get a new polynomialσ(F ) defined overQ. Similarly, applyingσ to the coefficients
of the rational function fM gives a new Belyi functionσ( fM ) : Sσ(F )→ bC. The reciprocal
image of segment [0, 1] byσ( fM ) viewed as graph cellularly embedded in Sσ(F ) gives a
hypermapσ(M )whose set of black (resp. white) vertices is the fiber above 0 (resp. 1).
This is how Gal(Q/Q) acts on hypermaps. It can be proved that this action preserves
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• the number and degrees of the white vertices, black vertices and faces,

• the number of edges,

• the genus,

• the monodromy group,

• the automorphism group.

This action is moreover faithfull, meaning that the corresponding morphism from
Gal(Q/Q) to the group of permutations of hypermaps is a monomorphism. This
obviously gives more ground to the idea that studying this action would allow to
understand the structure of Gal(Q/Q) in more details. In fact, since the genus is
preserved, this action leaves globally invariant the hypermaps of fixed genus. It can
be proved that the restriction of this action to such hypermaps is also faithfull. Also,
since the automorphism group is preserved, Gal(Q/Q) leaves invariant the regular
hypermaps, those for which the automorphism group acts transitively on the edges. It
was shown recently [GDJZ15] that the restriction to regular hypermaps also leads to a
faithfull action.
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