Journées de Géométrie Algorithmique

Sur quelques problèmes algorithmiques en théorie des noeuds

Christian Blanchet

28 janvier 2005

Références

- ▶ J. Hass, J. Lagarias, N. Pippenger, The Computational Complexity of Knot and link problems, arXiv:math.GT/9807016
- I. Dynnikov, Recognition algorithms in knot theory, Russian Math. Survey, 58:6 1093–1139.
- S. Matveev, Algorithmic Topology and classification of 3-manifolds. Springer 2003.

Références

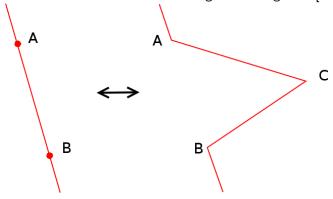
- ▶ G. Burde, H. Zieschang, *Knots*, De Gruyter 1985.
- ▶ P. Cromwell, *Knots and links*, Cambridge 2004.
- L. Kauffman, Knots and Physics, World Scientific 1991.
- ▶ D. Rolfsen, *Knots and links*, Publish or Perish 1976.

Noeuds polygonaux

- Noeud polygonal (PL) dans R³: réunion de segments formant une ligne fermée
- plus mathématique: plongement PL du cercle
- plusieurs composantes: entrelacs

Equivalence combinatoire

▶ Remplacer un segment par les deux autres côtés d'un triangle L'intersection de l'entrelacs avec le triangle est le segment [AB]



Groupes de tresses

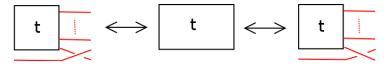
Une définition du groupe de tresses B_n :

▶ Une tresse à n brins est un plongement PL de n intervalles orientés dans $[0,1] \times \mathbb{C}$, avec temps croissant: chaque intervalle est le graphe d'une application de [0,1] dans \mathbb{C} , avec extrémités dans $\{0,1\} \times \{1,\ldots,n\}$, à équivalence combinatoire près (le mouvement triangle).

Théorème de Markov

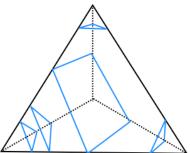
La relation sur les tresses correspondant à l'équivalence des fermetures est engendrée par

- la conjugaison
- la stabilisation



▶ Dans une variété de dimension 3 compacte triangulée (par exemple le complémentaire du voisinage tubulaire ouvert d'un noeud), on appelle surface normale une surface dont l'intersection avec chaque tétraèdre consiste en triangles et quadrangles à sommets sur des arêtes distinctes.

▶ Dans une variété de dimension 3 compacte triangulée (par exemple le complémentaire du voisinage tubulaire ouvert d'un noeud), on appelle surface normale une surface dont l'intersection avec chaque tétraèdre consiste en triangles et quadrangles à sommets sur des arêtes distinctes.



Pour chaque tétrèdre, on a 7 types de disques élémentaires.
 Avec t tétraèdres: à une surface normale F, on associe 7t entiers: les coordonnées normales.
 Les coordonnées normales déterminent la surface.

- Pour chaque tétrèdre, on a 7 types de disques élémentaires.
 Avec t tétraèdres: à une surface normale F, on associe 7t entiers: les coordonnées normales.
 Les coordonnées normales déterminent la surface.
- Un vecteur x ∈ Z^{7t} correspond à une (unique) surface si et seulement si:
 les x_i sont positifs ou nuls,
 contraintes linéaires pour chaque face,
 pour chaque tétraèdre: un seul type de quadrangle (x_ix_i = 0)

 Une solution fondamentale est une solution qui ne se décompose pas en somme non triviale.
 L'ensemble des solutions fondamentales est fini et calculable avec un algorithme.

- Une solution fondamentale est une solution qui ne se décompose pas en somme non triviale.
 L'ensemble des solutions fondamentales est fini et calculable avec un algorithme.
- Théorème: Pour un complément de noeud triangulé, il existe une surface normale fondamentale qui réalise une surface de Seifert de genre minimal.

Reconnaissance du noeud trivial

► Entrée: un diagramme plan à *c* croisements. Décider si ce noeud est trivial.

Reconnaissance du noeud trivial

- ► Entrée: un diagramme plan à *c* croisements. Décider si ce noeud est trivial.
- ▶ La méthode de Haken fournit un algorithme qui montre que le problème est dans NP $(O(2^{kc}))$.

Comparaison de noeuds

► Entrée: deux noeuds donnés par des diagrammes (au plus *c* croisements).

Décider si les deux noeuds sont équivalents.

Comparaison de noeuds

- ► Entrée: deux noeuds donnés par des diagrammes (au plus *c* croisements).
 - Décider si les deux noeuds sont équivalents.
- La méthode de Haken fournit un algorithme de complexité $O(2^{kc^2})$.

Fermeture dans l'anneau

▶ Deux tresses sont conjuguées si et seulement si elles ont des fermetures équivalentes dans l'anneau.

Fermeture dans l'anneau

- Deux tresses sont conjuguées si et seulement si elles ont des fermetures équivalentes dans l'anneau.
- ▶ Problème: Trouver un algorithme efficace qui décide si deux tresses positives (dont tous les croisements sont positifs) ont des fermetures équivalentes dans l'anneau.

Problème du mot pour les tresses

▶ Entrée: Deux mots dans les générateurs standards σ_i . Décider si ces mots représentent le même élément du groupe B_n ?

Problème du mot pour les tresses

- ▶ Entrée: Deux mots dans les générateurs standards σ_i . Décider si ces mots représentent le même élément du groupe B_n ?
- On dispose de plusieurs algorithmes efficaces.

Point de vue géométrique

► Théorème (Artin). Le groupe *B_n* est isomorphe au groupe des classes d'isotopie de difféomorphismes du disque avec *n* points marqués.

$$B_n \approx \mathcal{M}_{0,1,n} = \pi_0(Diff(\Sigma_{0,1,n}))$$

Point de vue géométrique

▶ Théorème (Artin). Le groupe B_n est isomorphe au groupe des classes d'isotopie de difféomorphismes du disque avec n points marqués.

$$B_n pprox \mathcal{M}_{0,1,n} = \pi_0(\mathit{Diff}(\Sigma_{0,1,n}))$$

▶ $\mathcal{M}_{0,1,n}$ agit sur le groupe libre $F_n = \pi_1(\Sigma_{0,1,n})$, et cette représentation est fidèle.

▶ On note B_n^+ le monoïde engendrée par les générateurs σ_i (tresses positives).

- ▶ On note B_n^+ le monoïde engendrée par les générateurs σ_i (tresses positives).
- ▶ Il y a sur B_n^+ une notion de lgcd (plus grand diviseur commun à gauche).

- ▶ On note B_n^+ le monoïde engendrée par les générateurs σ_i (tresses positives).
- ▶ Il y a sur B_n^+ une notion de lgcd (plus grand diviseur commun à gauche).
- A chaque permutation τ , on associe la tresse positive correspondante w_{τ} (tresse de permutation).

- ▶ On note B_n^+ le monoïde engendrée par les générateurs σ_i (tresses positives).
- ▶ Il y a sur B_n^+ une notion de lgcd (plus grand diviseur commun à gauche).
- ▶ A chaque permutation τ , on associe la tresse positive correspondante w_{τ} (tresse de permutation).
- Δ: la tresse positive associée à la permutation de plus grande longeur. L'ensemble des diviseurs (à gauche) de Δ est l'ensemble des tresses de permutation.

► Chaque tresse *t* a une écriture unique (forme normale):

$$t = \Delta^n w_{\tau_1} w_{\tau_2} \dots w_{\tau_k}$$
 $n \in \mathbb{Z}, \ w_{\tau_i} = lgcd(\Delta, w_{\tau_i} \dots w_{\tau_k})$

► Chaque tresse *t* a une écriture unique (forme normale):

$$t = \Delta^n w_{\tau_1} w_{\tau_2} \dots w_{\tau_k}$$
 $n \in \mathbb{Z}, \ w_{\tau_i} = lgcd(\Delta, w_{\tau_i} \dots w_{\tau_k})$

► Solution au problème du mot en $O(l^2 n \ln(n))$

Utilisation de l'ordre de Dehornoy

▶ Théorème: Chaque tresse t peut s'écrire: soit avec uniquement des σ_1 d'exposant positif, soit avec uniquement des σ_1 d'exposant négatif, soit sans σ_1 , et dans ce cas, idem avec σ_2 , ...

Utilisation de l'ordre de Dehornoy

- ▶ Théorème: Chaque tresse t peut s'écrire: soit avec uniquement des σ_1 d'exposant positif, soit avec uniquement des σ_1 d'exposant négatif, soit sans σ_1 , et dans ce cas, idem avec σ_2 , ...
- Solution au problème du mot avec complexité comparable à l'algorithme précédent. En pratique très efficace.

Le problème de conjugaison

▶ Entrée: Deux mots dans les générateurs standards σ_i .

Le problème de conjugaison

- ▶ Entrée: Deux mots dans les générateurs standards σ_i .
- Décider si ces mots représentent des éléments conjugués du groupe B_n.

Le problème de conjugaison

- ▶ Entrée: Deux mots dans les générateurs standards σ_i .
- Décider si ces mots représentent des éléments conjugués du groupe B_n.
- Si oui, trouver un élément qui les conjuguent.

Algorithme de Garside pour la conjugaison

```
Infimum: inf(t) = max\{m, \Delta^{-m}t \in B_n^+\}
Summit: S(t) = \{b = a^{-1}ta, inf(b) = max\{inf(c^{-1}tc), c \in B_n\}.
```

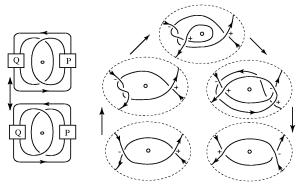
- ▶ Théorème: a) S(t) est fini.
 - b) t et t' sont conjugués si et seulement si $\mathcal{S}(t) = \mathcal{S}(t')$.
 - c) Il existe un algorithme qui détermine $\mathcal{S}(t)$ en temps fini (exponentiel dans la longueur du mot, écrit avec les générateurs standards).

Le problème de la stabilisation

Dans la théorème de Markov, on ne maîtrise pas le nombre de stabilisations requises.

Le problème de la stabilisation

- Dans la théorème de Markov, on ne maîtrise pas le nombre de stabilisations requises.
- Birman et Menasco propose un mouvement additionnel: mouvement d'échange.



Trivialité via les tresses fermées

Théorème: Si une tresse a pour fermeture le noeud trivial, alors on peut la réduire à la tresse triviale à 1 brin, par conjugaison, échange et déstabilisation.

Trivialité via les tresses fermées

- ➤ Théorème: Si une tresse a pour fermeture le noeud trivial, alors on peut la réduire à la tresse triviale à 1 brin, par conjugaison, échange et déstabilisation.
- Algorithme (très grande complexité) pour reconnaître le noeud trivial.

Diagramme rectangulaire

Un diagramme de noeud est rectangulaire si il est composé de segments parallèles aux axes 2 à 2 non alignés, les segments verticaux passent toujours au-dessus.

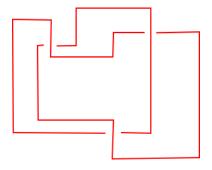


Diagramme rectangulaire

Un diagramme de noeud est rectangulaire si il est composé de segments parallèles aux axes 2 à 2 non alignés, les segments verticaux passent toujours au-dessus.

