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1 Introduction

e (1) count the number of real roots of a univariate polynomial, Sturm 1836

e (2)(ETR) decide whether a semi-algebraic set has a real solution Tarski
1939 (undecidable on integers Matiyasevich 1973)

e (3) decide whether a semi-algebraic set is connected cylindrical decomposi-
tion techniques : Lojasiewicz, Collins (1960-70)

e (4) stratification: decompose a semi-algebraic set in smooth manifolds of
various dimensions by Collins cylindrical algebraic decomposition

e (5) compute the topological invariants (Betti numbers) of semi algebraic

sets by CAD

complexity results

e two main methods for topology: cylindrical decomposition and critical point
method.



e (2) (ETR) and (3) polynomial in s, d and 7, doubly exponential in k& by
CAD, singly exponential in k by critical points method (see Basu/Pollack/Roy)

e (4) and (5) polynomial is, d, and 7, doubly exponential k& by CAD, singly
exponential 7 partial results for Betti one (this talk Basu/Pollack/Roy
2004) for the first Betti numbers (Basu 2004)

complexity results (continued, special case of quadratic polynomials)

e based on previous work of Barvinok: number of connected components
polynomial in &

e (2’) (ETR) in the quadratic case: polynomial in k (Grigor’ev Pasechnik)
e (3’) polynomial in k ? open
e (5) top Betti numbers: polynomial in k& (Basu 2004)

efficiency
e Fabrice Rouillier (using Jean-Charles Faugere Grobner basis computations)

e Mohab Safey, Philippe Trebuchet

e applications....

2 Cylindrical decomposition

2.1 Subresultants
P = a,XP+a, 1 XP ' 4+ a, oXP2+ -+ a,
Q — quq + bq_qufl 4o bO

SH,(P,Q) = by - oo .- b

ptg—J
o j-th (signed) subresultant coefficient sr;(P, Q) : determinant of the square
matrix obtained by taking the p + ¢ — 2j first columns of SR, (P, Q)

important for cylindrical decomposition
Proposition 2.1 deg(ged(P,Q)) = ¢ if and only if
sto(P,Q) = ... =srp-1(P,Q) = 0,s1(P,Q) # 0



2.2 Cylindrical decomposition: doubly exponential com-
plexity

e decomposition of a semi-algebraic set: partition in a finite number of semi-
algebraic sets

e cylindrical algebraic decomposition of R*: sequence Sy, ..., S, where S;
decomposes R" in cells, such that

a) S € & is either a point or an open interval

b) for every S € S;,j < k there exist semi algebraic functions g ;
5571 <...<§57gSZS—>R,

such that the cylinder S x R ¢ R*™! is the disjoint union of cells of
Siv1
* either a graph I'g;, of one of the {g;, pour j =1,..., /g
* or a band Bg ; of the cylinder between the graphs of two functions
§sj and s 1

e subset S of R¥ P -invariant: every polynimial P € P has a constant sign
(>0,<0,or=0) on S.

e cylindrical algebraic decomposition of R* adapted to P :cylindrical algebraic
decomposition such that each S € S, is P-invariant

Théoréeme 2.2 For every finite P C R[Xy,..., Xk], there ezists a cylindrical
algebraic decomposition of R* adapted to P.

e idea: fix the degre of the gcd so that roots dont mix up
e use subresultant coefficient

e induction on number of variables

e climination phase: iterated projection

e lifting phase : one point by cell

e algorithm very simple, Collins (1973)

e produces a lot of information

e solves (ETR) using sample points in cells

e semi-algebraic set: finite union of connected pieces, semi-algebraically home-
omorphic to open cubes



eliminates quantifiers (saturating first by derivatives)

a cell is described by the sign condition realized at one of its points

gives a stratification (saturating first by derivatives and making a linear
change of coordinates)

the closure of a cell is obtained by relaxing the sign conditions defining the
cell

gives connected components
gives a triangulation

reduces semi-algebraic algebraic topology to combinatorial algebraic topol-
ogy

gives all the Betti numbers

inconveniences: complexity doubly exponential in the number of variables:
eliminating one variable squares the degree.

Critical points method :single exponential com-
plexity

based on Morse, Oleinick, Petrowski, Thom, Milnor

complexity: Grigori’ev/Vorobjov, Canny, Renegar, Heintz/Roy/Solerno,
Basu/Pollack/Roy

nonsingular bounded compact hypersurface V.= {M € R" | H(M) = 0},

i.e. such that
oH OH

8_X1< ),...,a—Xn(

does not vanish on the zeros of H in C™.

Grady (H) = [ M)]

critical points of the projection on the X; axis meet all the connected com-
ponents of V

k-1

except special cases, d(d — 1)"~! such critical points (Bezout),

H H
_ 9 gy 9 (M) =0,

H(M) = 55 (M) = .. 5



3.1 At least a point in every connected component of an
algebraic set

e reduction to smooth and bounded, with a finite number of critical points
in the X, direction: infinitesimals and limits

e algebraic Puiseux series: computations with coefficients in Ze], be careful
to bound degrees in € during computations

e a point in every connected component of an algebraic set: finite number
(single exponential) of critical points, which can be projected on a line

e RUR rational univariate representation (F. Rouillier)
e univariate techniques (Sturm, subresultants)

e complexity single exponential (polynomial in the number of critical points
which is singly exponential)

Some details en the bounded algebraic case.

Suppose that

e Q(z) >0 for every z € R,
e Z(Q,R*) C B(0,1/c) for some ¢ < 1,c € D,
o dy >dy- - 2> dy,

o deg(Q) < dy, tdegy, (Q) < d; (maximal total degree of the monomials in
containing the variable X;), fori =2,... k,

e d; be an even number > d;,i = 1,...,k, and d = (dy, ..., dy).

e ( be a variable and R(() be the field of algebraic Puiseux series in ¢ with
coefficients in R.

Gild,c) = e(XP+ + XP + X2+ + XD — (2k— 1),
Def(Qv d7 ¢, C) = CGk(dv C) + (1 - C)Q

Take lim, corresponds to take ( = 0 (with some precautions).

Proposition 3.1 The algebraic set Z((Q,d, ¢, (), R(C)") is a nonsingular alge-
braic hypersurface bounded over R.

lin(Z((Q. . .0, R(Q)")) = Z(Q. BY)

Moreover Z((Q, d, ¢, ¢),R(C)*) € B(0,1/¢) and X, has a finite number of critical
points on Z((Q, d, ¢, O), R(Q)").

Xj-pseudo-critical points are limits of X;-critical points on Z((Q, d, ¢, (), R(C)k).
They meet every connected componnent.

bt



3.2 ETR: existential theory of the reals

e a point in every connected component of a semi-algebraic set: uses a new

infinitesimal
Proposition 3.2 C' connected component of a set defined by P, = --- = P, =
0,Ppqy > 0,---, P, > 0. There exist indices i1, ...,i, and € sufficiently small
such that P, = -+ =P =F, —¢=---PF, —e =0, has a connected component

D contained in C.

e maybe too many non empty intersections
e trick to reach general position: again infinitesimals

e complexity single exponential s¥+1qO®).

3.3 Compute connectivity

e perform (ETR) parametrically and then make a recursion: roadmap con-
struction

e roadmap : dimension at most one, connected in each connected component,
meets each connected component of each fiber along the X;-axis

e construct connecting paths
e counts connected components: by Betti number (dimension of homology)

e complexity sFT1qO%**)

3.4 Use parametrized paths

e parametrized connecting paths
e cover by contractible sets (parametrized paths)

e describe connected components: unions of points parametrically connected
to points in the same connected components

e cover by closed contractible sets (construction of Gabrielov Vorobjov)
e use spectral sequences (slightly more advanced algebraic topology)
e computation of b; using Mayer-Vietoris sequences (Basu/Pollack/R 2004)

e computation of the first Betti numbers (Basu 2004): more spectral se-
quences



Ay, ..., A,sub-complexes of a finite simplicial complex A such that A = A; U
- UA,, A, the sub-complex A;; N---N A, .
C'(A) the Q-vector space of i co-chains of A, and C*(A), the complex

o CTH(A) L>Cq<A) i>C‘1+1(A) N

where d : C9(A) — C7T1(A) are the usual co-boundary homomorphisms.
The generalized Mayer-Vietoris sequence is the following exact sequence

0— C*(A) 5[] C(4) RN IT ¢ (4ii)

10<11

by

(" denotes omission). Exactness is classical.
Consider the following complex (which is no more exact)

0— J]C*(4) 2= T C*(Aii) == T C*(Aigia) -+
0 10<i1 10 < <ip
op

i0<~~~<ip io<~~~<ip+1

and the induced cohomology complex.

Proposition 3.3 Let Aq,..., A, be sub-complexes of a finite simplicial complex
A such that A = Ay U ---U A, and each A; is contractible. Then, bi(A) =
dim((d2)) — dim((d1)), with

HHO(Ai) IR HHO(Ai,j) L, H HO(AZ',M)

1<j 1<j<t

in other words three by three intersections suffice to compute b; when the
cover is closed and contractible.

Proof: consider the following bi-graded double complex MP4 with a total
differential D = 6 + (—1)Pd, where



d d d
) 1)
- Hio CB(AiO) — Hi0<i1 Cg(Aio,h) - Hi0<’i1<’ig Cg(Aio,h,iQ) -
d d d
) 1)
- Hio C2(Azo) - Hz’0<z’1 CQ(Aio,h) - Hz‘0<i1<z’2 CZ(Aio,iLiQ) -
d d d
1) é
- Hio Cl(Az'o) - Hi0<i1 Cl(AiO,il) - Hi0<i1<i2 Cl(AiO,h,iz) -
d d d
) 1)
- Hio CO (Aio) - Hi0<i1 CO(Aio,h) - Hi0<i1 <io CO(Aio,h,iz) -
d d d
0 0 0

consider two spectral sequences (corresponding to taking horizontal or vertical
filtrations respectively) ....
one of them degenerates ....

3.5

Practical computations of b,
Basu and Kettner (submitted to SOCG)

use spectral sequences and consider intersections three by three
now apply CAD (rather than critical point method)

able to compute the topology of the union of 10 ellipsoids in three space

classical CAD fails

Quadratic case: polynomial in &

quadratic case, ¢ quadratic equations, dimension £
derivatives of quadratic are linear

go to ¢ + k variables

a generic linear combination of ¢ matrices is of rank &k — ¢ + 1
go to 2¢ — 1 variables using linear algebra

use there single exponential complexity



quadratic case (continued)
e few top Betti numbers (Saugata Basu)

e use Agrachev geometric results

e Open problems
e All Betti numbers (single exponential complexity)?
e Stratification (single exponential complexity)?

e Complexity in the quadratic case: besides ETR, global optimization and top
Betti numbers, what is polynomial-time complexity ? Counting connected
components ?



