Calculs topologiques sur les ensembles semi-algébriques
 Résultats récents et problèmes ouverts

Marie-Françoise Roy
IRMAR (UMR CNRS 6625), Université de Rennes

February 6, 2005

Main reference

Algorithms in Real Algebraic Geometry
Saugata Basu
Richard Pollack
Marie-Françoise Roy
Springer-Verlag 2003

1 Introduction

- (1) count the number of real roots of a univariate polynomial, Sturm 1836
- (2)(ETR) decide whether a semi-algebraic set has a real solution Tarski 1939 (undecidable on integers Matiyasevich 1973)
- (3) decide whether a semi-algebraic set is connected cylindrical decomposition techniques : Lojasiewicz, Collins (1960-70)
- (4) stratification: decompose a semi-algebraic set in smooth manifolds of various dimensions by Collins cylindrical algebraic decomposition
- (5) compute the topological invariants (Betti numbers) of semi algebraic sets by CAD
complexity results
- two main methods for topology: cylindrical decomposition and critical point method.
- (2) (ETR) and (3) polynomial in s, d and τ, doubly exponential in k by CAD, singly exponential in k by critical points method (see Basu/Pollack/Roy)
- (4) and (5) polynomial is, d, and τ, doubly exponential k by CAD, singly exponential ? partial results for Betti one (this talk Basu/Pollack/Roy 2004) for the first Betti numbers (Basu 2004)
complexity results (continued, special case of quadratic polynomials)
- based on previous work of Barvinok: number of connected components polynomial in k
- (2') (ETR) in the quadratic case: polynomial in k (Grigor'ev Pasechnik)
- (3') polynomial in k ? open
- (5') top Betti numbers: polynomial in k (Basu 2004)
efficiency
- Fabrice Rouillier (using Jean-Charles Faugère Grobner basis computations)
- Mohab Safey, Philippe Trebuchet
- applications....

2 Cylindrical decomposition

2.1 Subresultants

$$
\begin{aligned}
& P=a_{p} X^{p}+a_{p-1} X^{p-1}+a_{p-2} X^{p-2}+\cdots+a_{0}, \\
& Q=b_{q} X^{q}+b_{q-1} X^{q-1}+\cdots+b_{0} \\
& \mathrm{SH}_{j}(P, Q)=\underbrace{\left(\begin{array}{cccccccc}
a_{p} & \cdots & \cdots & \cdots & \cdots & a_{0} & \\
& \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \\
& & a_{p} & \cdots & \cdots & \cdots & \cdots & a_{0} \\
& & & b_{q} & \cdots & \cdots & \cdots & b_{0} \\
& . \cdot & b_{q} & \cdots & \cdots & \cdots & b_{0} & \\
b_{q} & \cdots & \cdots & \cdots & b_{0} & & &
\end{array}\right)}\} q q-j
\end{aligned}
$$

- j-th (signed) subresultant coefficient $\mathrm{sr}_{j}(P, Q)$: determinant of the square matrix obtained by taking the $p+q-2 j$ first columns of $\mathrm{SR}_{j}(P, Q)$
important for cylindrical decomposition
Proposition $2.1 \operatorname{deg}(\operatorname{gcd}(P, Q))=\ell$ if and only if

$$
\operatorname{sr}_{0}(P, Q)=\ldots=\operatorname{sr}_{\ell-1}(P, Q)=0, \operatorname{sr}_{\ell}(P, Q) \neq 0
$$

2.2 Cylindrical decomposition: doubly exponential complexity

- decomposition of a semi-algebraic set: partition in a finite number of semialgebraic sets
- cylindrical algebraic decomposition of \mathbb{R}^{k} : sequence $\mathcal{S}_{1}, \ldots, \mathcal{S}_{k}$, where \mathcal{S}_{i} decomposes \mathbb{R}^{i} in cells, such that
a) $S \in \mathcal{S}_{1}$ is either a point or an open interval
b) for every $S \in \mathcal{S}_{j}, j<k$ there exist semi algebraic functions $\xi_{S, j}$

$$
\xi_{S, 1}<\ldots<\xi_{S, \ell_{S}}: S \longrightarrow \mathbb{R}
$$

such that the cylinder $S \times \mathbb{R} \subset \mathbb{R}^{i+1}$ is the disjoint union of cells of \mathcal{S}_{i+1}

* either a graph $\Gamma_{S, j}$, of one of the $\xi_{S, j}$, pour $j=1, \ldots, \ell_{S}$
* or a band $B_{S, j}$ of the cylinder between the graphs of two functions $\xi_{S, j}$ and $\xi_{S, j+1}$
- subset S of $\mathbb{R}^{k} \mathcal{P}$-invariant: every polynimial $P \in \mathcal{P}$ has a constant sign ($>0,<0$, or $=0$) on S.
- cylindrical algebraic decomposition of \mathbb{R}^{k} adapted to \mathcal{P} :cylindrical algebraic decomposition such that each $S \in \mathcal{S}_{k}$ is \mathcal{P}-invariant

Théorème 2.2 For every finite $\mathcal{P} \subset \mathbb{R}\left[X_{1}, \ldots, X_{k}\right]$, there exists a cylindrical algebraic decomposition of \mathbb{R}^{k} adapted to \mathcal{P}.

- idea: fix the degre of the gcd so that roots dont mix up
- use subresultant coefficient
- induction on number of variables
- elimination phase: iterated projection
- lifting phase : one point by cell
- algorithm very simple, Collins (1973)
- produces a lot of information
- solves (ETR) using sample points in cells
- semi-algebraic set: finite union of connected pieces, semi-algebraically homeomorphic to open cubes
- eliminates quantifiers (saturating first by derivatives)
- a cell is described by the sign condition realized at one of its points
- gives a stratification (saturating first by derivatives and making a linear change of coordinates)
- the closure of a cell is obtained by relaxing the sign conditions defining the cell
- gives connected components
- gives a triangulation
- reduces semi-algebraic algebraic topology to combinatorial algebraic topology
- gives all the Betti numbers
- inconveniences: complexity doubly exponential in the number of variables: eliminating one variable squares the degree.

3 Critical points method :single exponential complexity

- based on Morse, Oleinick, Petrowski, Thom, Milnor
- complexity: Grigori'ev/Vorobjov, Canny, Renegar, Heintz/Roy/Solerno, Basu/Pollack/Roy
- nonsingular bounded compact hypersurface $V=\left\{M \in \mathbb{R}^{n}, H(M)=0\right\}$, i.e. such that

$$
\operatorname{Grad}_{M}(H)=\left[\frac{\partial H}{\partial X_{1}}(M), \ldots, \frac{\partial H}{\partial X_{n}}(M)\right]
$$

does not vanish on the zeros of H in C^{n}.

- critical points of the projection on the X_{1} axis meet all the connected components of V
- except special cases, $d(d-1)^{k-1}$ such critical points (Bezout),

$$
H(M)=\frac{\partial H}{\partial X_{2}}(M)=\ldots, \frac{\partial H}{\partial X_{n}}(M)=0,
$$

3.1 At least a point in every connected component of an algebraic set

- reduction to smooth and bounded, with a finite number of critical points in the X_{1} direction: infinitesimals and limits
- algebraic Puiseux series: computations with coefficients in $\mathbb{Z}[\varepsilon]$, be careful to bound degrees in ε during computations
- a point in every connected component of an algebraic set: finite number (single exponential) of critical points, which can be projected on a line
- RUR rational univariate representation (F. Rouillier)
- univariate techniques (Sturm, subresultants)
- complexity single exponential (polynomial in the number of critical points which is singly exponential)

Some details en the bounded algebraic case.
Suppose that

- $Q(x) \geq 0$ for every $x \in \mathbb{R}^{k}$,
- $\mathrm{Z}\left(Q, \mathbb{R}^{k}\right) \subset B(0,1 / c)$ for some $c \leq 1, c \in \mathrm{D}$,
- $d_{1} \geq d_{2} \cdots \geq d_{k}$,
- $\operatorname{deg}(Q) \leq d_{1}, \operatorname{tdeg}_{X_{i}}(Q) \leq d_{i}$ (maximal total degree of the monomials in Q containing the variable X_{i}), for $i=2, \ldots, k$,
- \bar{d}_{i} be an even number $>d_{i}, i=1, \ldots, k$, and $\bar{d}=\left(\bar{d}_{1}, \ldots, \bar{d}_{k}\right)$.
- ζ be a variable and $\mathbb{R}\langle\zeta\rangle$ be the field of algebraic Puiseux series in ζ with coefficients in \mathbb{R}.

$$
\begin{aligned}
G_{k}(\bar{d}, c) & =c^{\bar{d}_{1}}\left(X_{1}^{\bar{d}_{1}}+\cdots+X_{k}^{\bar{d}_{k}}+X_{2}^{2}+\cdots+X_{k}^{2}\right)-(2 k-1), \\
\operatorname{Def}(Q, \bar{d}, c, \zeta) & =\zeta G_{k}(\bar{d}, c)+(1-\zeta) Q
\end{aligned}
$$

Take $\lim _{\zeta}$ corresponds to take $\zeta=0$ (with some precautions).
Proposition 3.1 The algebraic set $\mathrm{Z}\left((Q, \bar{d}, c, \zeta), \mathbb{R}\langle\zeta\rangle^{k}\right)$ is a nonsingular algebraic hypersurface bounded over \mathbb{R}.

$$
\lim _{\zeta}\left(\mathrm{Z}\left((Q, \bar{d}, c, \zeta), \mathbb{R}\langle\zeta\rangle^{k}\right)\right)=\mathrm{Z}\left(Q, \mathbb{R}^{k}\right)
$$

Moreover $\mathrm{Z}\left((Q, \bar{d}, c, \zeta), \mathbb{R}\langle\zeta\rangle^{k}\right) \subset B(0,1 / c)$ and X_{1} has a finite number of critical points on $\mathrm{Z}\left((Q, \bar{d}, c, \zeta), \mathbb{R}\langle\zeta\rangle^{k}\right)$.
X_{1}-pseudo-critical points are limits of X_{1}-critical points on $\mathrm{Z}\left((Q, \bar{d}, c, \zeta), \mathbb{R}\langle\zeta\rangle^{k}\right)$. They meet every connected componnent.

3.2 ETR: existential theory of the reals

- a point in every connected component of a semi-algebraic set: uses a new infinitesimal

Proposition 3.2 C connected component of a set defined by $P_{1}=\cdots=P_{\ell}=$ $0, P_{\ell+1}>0, \cdots, P_{s}>0$. There exist indices i_{1}, \ldots, i_{m} and ε sufficiently small such that $P_{1}=\cdots=P_{\ell}=P_{i_{1}}-\varepsilon=\cdots P_{i_{m}}-\varepsilon=0$, has a connected component D contained in C.

- maybe too many non empty intersections
- trick to reach general position: again infinitesimals
- complexity single exponential $s^{k+1} d^{O(k)}$.

3.3 Compute connectivity

- perform (ETR) parametrically and then make a recursion: roadmap construction
- roadmap : dimension at most one, connected in each connected component, meets each connected component of each fiber along the X_{1}-axis
- construct connecting paths
- counts connected components: b_{0} Betti number (dimension of homology)
- complexity $s^{k+1} d^{O\left(k^{2}\right)}$

3.4 Use parametrized paths

- parametrized connecting paths
- cover by contractible sets (parametrized paths)
- describe connected components: unions of points parametrically connected to points in the same connected components
- cover by closed contractible sets (construction of Gabrielov Vorobjov)
- use spectral sequences (slightly more advanced algebraic topology)
- computation of b_{1} using Mayer-Vietoris sequences (Basu/Pollack/R 2004)
- computation of the first Betti numbers (Basu 2004): more spectral sequences
A_{1}, \ldots, A_{n} sub-complexes of a finite simplicial complex A such that $A=A_{1} \cup$ $\cdots \cup A_{n}, A_{i_{0}, \ldots, i_{p}}$ the sub-complex $A_{i_{0}} \cap \cdots \cap A_{i_{p}}$.
$C^{i}(A)$ the \mathbb{Q}-vector space of i co-chains of A, and $C^{\bullet}(A)$, the complex

$$
\cdots \rightarrow C^{q-1}(A) \xrightarrow{d} C^{q}(A) \xrightarrow{d} C^{q+1}(A) \rightarrow \cdots
$$

where $d: C^{q}(A) \rightarrow C^{q+1}(A)$ are the usual co-boundary homomorphisms.
The generalized Mayer-Vietoris sequence is the following exact sequence

$$
\begin{gathered}
0 \longrightarrow C^{\bullet}(A) \xrightarrow{r} \prod_{i_{0}} C^{\bullet}\left(A_{i_{0}}\right) \xrightarrow{\delta_{1}} \prod_{i_{0}<i_{1}} C^{\bullet}\left(A_{i_{0}, i_{1}}\right) \\
\cdots \xrightarrow{\delta_{p-1}} \prod_{i_{0}<\cdots<i_{p}} C^{\bullet}\left(A_{i_{0}, \ldots, i_{p}}\right) \xrightarrow{\delta_{p}} \prod_{i_{0}<\cdots<i_{p+1}} C^{\bullet}\left(A_{i_{0}, \ldots, i_{p+1}}\right) \cdots
\end{gathered}
$$

where r is induced by restriction and the connecting homomorphisms δ are defined by

$$
(\delta \omega)_{i_{0}, \ldots, i_{p+1}}(s)=\sum_{0 \leq i \leq p+1}(-1)^{i} \omega_{i_{0}, \ldots, \hat{i}_{i}, \ldots, i_{p+1}}(s),
$$

(${ }^{\wedge}$ denotes omission). Exactness is classical.
Consider the following complex (which is no more exact)

$$
\begin{aligned}
0 & \prod_{i_{0}} C^{\bullet}\left(A_{i_{0}}\right) \xrightarrow{\delta_{1}} \prod_{i_{0}<i_{1}} C^{\bullet}\left(A_{i_{0}, i_{1}}\right) \xrightarrow{\delta_{2}} \prod_{i_{0}<\cdots<i_{p}} C^{\bullet}\left(A_{i_{0}, \ldots, i_{2}}\right) \cdots \\
& \ldots \xrightarrow{\delta_{p-1}} \prod_{i_{0}<\cdots<i_{p}} C^{\bullet}\left(A_{i_{0}, \ldots, i_{p}}\right) \xrightarrow{\delta_{p}} \prod_{i_{0}<\cdots<i_{p+1}} C^{\bullet}\left(A_{i_{0}, \ldots, i_{p+1}}\right) \cdots
\end{aligned}
$$

and the induced cohomology complex.
Proposition 3.3 Let A_{1}, \ldots, A_{n} be sub-complexes of a finite simplicial complex A such that $A=A_{1} \cup \cdots \cup A_{n}$ and each A_{i} is contractible. Then, $b_{1}(A)=$ $\operatorname{dim}\left(\left(\delta_{2}\right)\right)-\operatorname{dim}\left(\left(\delta_{1}\right)\right)$, with

$$
\prod_{i} H^{0}\left(A_{i}\right) \xrightarrow{\delta_{1}} \prod_{i<j} H^{0}\left(A_{i, j}\right) \xrightarrow{\delta_{2}} \prod_{i<j<\ell} H^{0}\left(A_{i, j, \ell}\right)
$$

in other words three by three intersections suffice to compute b_{1} when the cover is closed and contractible.

Proof: consider the following bi-graded double complex $\mathcal{M}^{p, q}$, with a total differential $D=\delta+(-1)^{p} d$, where

$$
\mathcal{M}^{p, q}=\prod_{i_{0}, \ldots, i_{p}} C^{q}\left(A_{i_{0}, \ldots, i_{p}}\right) .
$$

consider two spectral sequences (corresponding to taking horizontal or vertical filtrations respectively)
one of them degenerates ...

3.5 Practical computations of b_{1}

- Basu and Kettner (submitted to SOCG)
- use spectral sequences and consider intersections three by three
- now apply CAD (rather than critical point method)
- able to compute the topology of the union of 10 ellipsoids in three space
- classical CAD fails

3.6 Quadratic case: polynomial in k

- quadratic case, ℓ quadratic equations, dimension k
- derivatives of quadratic are linear
- go to $\ell+k$ variables
- a generic linear combination of ℓ matrices is of rank $k-\ell+1$
- go to $2 \ell-1$ variables using linear algebra
- use there single exponential complexity

quadratic case (continued)

- few top Betti numbers (Saugata Basu)
- use Agrachev geometric results
- Open problems
- All Betti numbers (single exponential complexity)?
- Stratification (single exponential complexity)?
- Complexity in the quadratic case: besides ETR, global optimization and top Betti numbers, what is polynomial-time complexity? Counting connected components?

